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Resumen. En este trabajo se presenta un generador de mallas planas de tridngulos basado en drboles
cuaternarios (quadtrees). Los generadores de malla quadtree tienen la ventaja de adaptarse a la densidad
de los datos, refinando la malla s6lo donde es necesario conduciendo a mallas muy eficientes. Se asume
un contorno poligonal y se seleccionan aquellas celdas cuadradas de la grilla que representan al con-
torno y al interior del dominio. Luego se subdividen estas celdas por alguna de sus diagonales y queda
conformada una malla de tridngulos. Para seleccionar las celdas del contorno se utiliza el algoritmo de
Bresenham. Este algoritmo se utiliza en computacioén grafica para rasterizar lineas y existen variantes
para diferentes tipos de curvas y también para quadtrees. Este algoritmo también permite seleccionar los
nodos de la grilla que mejor aproximan cada recta de contorno.

Keywords: Mesh Generation, triangles, quadtrees, Bresenham’s algorithm.

Abstract. In this work, we present a mesh generator for planar triangles based on quadtrees. Quadtree
mesh generators have the advantage of adapting to data density, refining the mesh only where necessary
and providing highly efficient meshes. A polygonal boundary is assumed, and only the cells representing
the boundary and the interior of the domain are selected. These cells are subdivided along one of their
diagonals, producing a mesh of triangles. To select the boundary cells, Bresenham’s algorithm is used.
This algorithm, originally developed for computer graphics to rasterize lines, has variants for different
types of curves and also for quadtrees. It selects the nodes of the grid that best approximate the boundary.
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1. INTRODUCCION

La generacion de mallas mediante guadtrees es una técnica jerarquica utilizada en andlisis
numéricos como el Método de los Elementos Finitos (FEM) (Castellazzi et al., 2015) y el Méto-
do de Volimenes Finitos (FVM) (Bergmann et al., 2022; Gravenkamp y Duczek, 2017). La idea
principal consiste en dividir recursivamente el dominio en celdas cuadradas (en 2D) o ctbicas
(en 3D, denominados octrees) hasta alcanzar un criterio de refinamiento predefinido, como la
geometria, gradientes de campo o proximidad a condiciones de contorno.

Un quadtree comienza con un cuadrado inicial el cual es recursivamente subdividido. Du-
rante esta subdivision pueden aparecer nodos colgantes (hanging nodes), que son nodos que
estan sobre un lado de una celda pero no pertenecen a esa celda. Decimos que la subdivision
es balanceada si los lados de cada celda tienen a lo sumo un nodo colgante (subdivision 2:1),
caso contrario el quadtree se dice no balanceado. En la figura 1 tenemos dos quadtrees, uno
balanceado a la izquierda y otro no balanceado a la derecha, pues presenta lados con mds de un
nodo colgante.

Figura 1: Quadtree balanceado y no balanceado

Para generar una malla de tridngulos de una regién planar con borde poligonal se puede usar
directamente un quadtree cuyas celdas son divididas por sus diagonales y usando patrones espe-
cificos de subdivision en el contorno para generar la malla (Yerry y Shephard, 1984; Shephard
et al., 1986; Frey y George, 2008). La mayoria de los autores utilizan quadtrees balanceados,
pues producen una transicion suave de tamafos de los elementos finitos generados. También se
suelen usar los quadtrees como un medio auxiliar para localizar puntos que serdn mallados por
otros métodos, como el método de Delaunay (Bern et al., 1994; Bern y Eppstein, 1995; Dari,
1994).

En una linea de trabajo similar a la aqui presentada podemos citar el articulo de (Gravenkamp
y Duczek, 2017), aunque en ese trabajo se usaron elementos finitos poligonales para aproximar
el contorno. En la figura 2 (extraida de ese trabajo) se pueden apreciar a la izquierda los no-
dos colgantes (hanging nodes), y a la derecha el procedimiento de subdivisién aplicado para
eliminar los nodos colgantes.

La eliminacién de los nodos colgantes es necesaria si queremos generar mallas conformes
de elementos finitos, esto es, donde dos elementos adyacentes comparten todos los nodos de sus
lados con sus vecinos.

En ocasiones cuando el contorno se extrae con poca definicién, como en el caso de imdgenes
médicas o de escaneo, se lo suele aproximar directamente con las celdas completas (marcadas
en gris en la figura 2). Aunque si se requiere aproximar al contorno con precisién se deben
particionar todas las celdas intersectadas por la poligonal de contorno (celdas de contorno) y
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en general se recurre a la utilizacion de patrones de subdivision de celdas. Esta no es una tarea
sencilla ya que implica detectar todas las celdas intersectadas (Frey y George, 2008).

® Corner node
® Hanging node
Phys. boundary

@ Corner node
© Added node

Figura 2: Quadtree aproximacion del contorno (Gravenkamp y Duczek, 2017)

En este trabajo presentaremos un generador de mallas de elementos triangulares basado en
la subdivision por las diagonales de las celdas de un quadtree balanceado. Se asumird que el
contorno viene definido por una poligonal y la deteccidén de celdas de contorno se hard utili-
zando el algoritmo de Bresenham (Bresenham, 1965) y se mostrard como llegar a la malla final
conservando todos los detalles del contorno.

2. EL ALGORITMO DE BRESENHAM

Este algoritmo se utiliza para rasterizar un segmento de recta en una grilla de pixeles, esto
es, se deben seleccionar los pixeles a iluminar que mejor representen al segmento. En la figura
3 tenemos una grilla de pixeles (centrados en las celdas), donde los pixeles marcados en verde
son datos (los extremos del segmento) y los marcados en rojo los selecciona el algoritmo.

(5,3) (5,3)

(0,0

(o.o)o/

Figura 3: Algoritmo de Bresenham para grillas de celdas.

El funcionamiento es bastante sencillo, se asumen todos los datos enteros, esto es, los extre-
mos del segmento a rasterizar estdn centrados en celdas y se recorren desde un extremo hacia
el otro en la direcciéon de maximo crecimiento (x en este caso). Se incrementa en uno el indice
x de cada celda y se selecciona la celda cuyo centro estd mds cercano al segmento en vertical.
Una vez recorrido todo el segmento tendremos los puntos rojos indicados en la figura 3.

El algoritmo de Bresenham fue ideado por su autor para trazar segmentos de lineas en un
pléter digital (Bresenham, 1965), donde la punta de impresidn se centraba en celdas y sélo po-
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dia moverse mediante engranajes en vertical, horizontal o diagonal. A la derecha de la figura
3 tenemos la poligonal trazada que aproxima al segmento de recta. Notemos que ademds tene-
mos seleccionadas las celdas que representan el contorno, esto es importante para distinguir las
celdas interiores de las exteriores.

2.1. Algoritmo de Bresenham en grillas de pixeles

Para la generacion de mallas es mejor utilizar grillas con pixeles centrados en los puntos
de la grilla (ya que luego se asociardn a vértices de la malla). Consideraremos ahora que el
segmento puede tener extremos reales, esto es, no necesitan coincidir con un centro de celda.
Estos extremos se deben asociar al punto de grilla mas cercano que marcamos en verde.

(X2,y2) (X2y2)
L2
L ]

(& [©;

Figura 4: Algoritmo de Bresenham para grillas de puntos.

Ahora debemos encontrar los puntos de la grilla mas representativos del segmento, para ello
lo recorremos en la direccidon de médximo crecimiento (horizontal en este caso) partiendo del
punto asociado a un vértice. Luego, incrementamos en uno la coordenada horizontal del punto
de grilla y seleccionamos al punto de grilla mds cercano al segmento en vertical. Notemos que
en este proceso también podemos seleccionar durante el trazado a las celdas mas representativas
que seran aquellas cuyos centros estén mds cercanos a la recta en la vertical.

2.2. Algoritmo de Bresenham en Quadtrees

El algoritmo de Bresenham también se puede adaptar para el trazado de segmentos de recta
en grillas de quadtrees (Hwang y Cheng, 1988), como se muestra en la figura 5.

(%2,y2) (X2Y2)
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Figura 5: Algoritmo de Bresenham para grillas de quadtrees.
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Notemos que en este caso debemos tener la precaucion que los puntos de la grilla seleccio-
nados no deben ser puntos colgantes porque esto afectard al algoritmo de generacion de mallas.
Luego si alguno de los puntos seleccionados es colgante debemos subdividir la celda a la que
pertenece para sacarlo de esa condicion.

3. GENERACION DE MALLA

Para la generacién de malla partiremos de un contorno cerrado poligonal encerrado en un
quadtree. Asociaremos cada vértice de la poligonal a un punto regular del quadtree, esto es
que no sea colgante. Si hay mas de un vértice de la poligonal asociado a un mismo punto del
quadtree, entonces subdividimos las celdas que contienen estos vértices. Finalmente debemos
llegar a un quadtree subdividido donde cada sector de la poligonal de contorno tenga sus vértices
asociados a un dnico punto del quadtree.

Luego, recorreremos la poligonal de contorno en sentido antihorario de manera que a la
izquierda tendremos el interior y a la derecha el exterior y usando el algoritmo de Bresenham
seleccionamos los puntos de la grilla que mejor representan al contorno. Notemos que dos
puntos consecutivos obtenidos por Bresenham representan un sector que, o bien pertenece a un
lado de una celda o a una diagonal. Para seleccionar las celdas de contorno usamos el siguiente
criterio: 1) si el sector de Bresenham coincide con un lado, la celda de contorno queda a la
izquierda del sector o 2) si el sector coincide con una diagonal, la celda se subdivide en dos
tridngulos siendo la celda de contorno triangular y ubicada a la izquierda del sector.

La idea es que la malla quede formada por las celdas del quadtree contenidas dentro de
la poligonal de contorno. Ademds, en el contorno debemos desplazar las coordenadas de los
puntos del quadtree para que las celdas intersectadas queden completamente afuera o adentro.

Finalmente llegaremos a un conjunto de celdas encerradas por la poligonal de contorno.
Estas celdas tendran forma cuadrilateral o triangular. Subdividiendo las celdas cuadrilaterales
por una de sus diagonales tendremos un conjunto de celdas triangulares que forman la malla.

A continuacién describiremos las principales operaciones necesarias para generar la malla.

3.1. Ajuste en el Contorno

En el contorno debemos desplazar los puntos de la grilla de manera que las celdas de con-
torno queden completamente adentro del dominio.

(X2Y2) (X2.y2)
7

/

(X1.y1)

(X3,y1)

Figura 6: Ajuste de puntos en el contorno.

Una vez hecho el ajuste debemos pasar a la diagonalizacion de las celdas cuadrilaterales
contenidas en el interior del dominio a mallar.
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3.2. Diagonalizacion de las celdas cuadrilaterales

Para diagonalizar las celdas cuadrilaterales debemos elegir en cada una de estas celdas una
de las diagonales para subdividirlas. Podemos elegir cualquiera de las diagonales pero adopta-
remos la diagonal menor ya que, en general, conduce a tridngulos menos distorsionados (Frey
y George, 2008).

(X2¥2) (xzy2)

(x1y1) (x1y1)

Figura 7: Diagonalizacién de celdas.

En la figura 7 podemos apreciar a la izquierda los cuadrildteros discretizados y en amarillo
las celdas externas. A la derecha podemos ver la malla final con las celdas externas eliminadas.

3.3. Eliminacion de nodos colgantes

Notemos que en la malla final mostrada en la figura 7 aparecen nodos colgantes marcados
con circulos negros. Si fuese necesario eliminar estos puntos subdividiremos los tridngulos que
los contienen usando el algoritmo de particién por el lado més largo (Rivara, 1984, 1996).

“ )

Figura 8: Particién por el lado més largo.

Bésicamente en este algoritmo si el nodo colgante se encuentra sobre el lado mds largo se
une con el vértice opuesto, sino estuviera sobre el lado més largo entonces se particiona ese
lado generando un nuevo nodo colgante y se usa el patrén de subdivision mostrado en la figura
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8 donde también se muestran dos patrones posibles cuando hay tres nodos colgantes. El proceso
se repite hasta eliminar todos los nodos colgantes. En la misma figura vemos la aplicacién del
proceso al ejemplo previo.

4. EJEMPLO DE MALLADO

A continuacién mostraremos paso a paso el proceso para obtener una malla de tridngulos
partiendo de un contorno poligonal encerrado en un cuadrado, como se muestra en la figura
9. A la izquierda tenemos la poligonal de contorno con vértices azules inserta en un quadtree
inicial. El siguiente paso es asignar a cada vértice de la poligonal un punto de la grilla que no
sea un nodo colgante. Estos puntos son los més cercanos a cada vértice y se muestran en verde.

Figura 9: Asignacién de puntos (paso 1).

Notemos que existe un conflicto, pues dos vértices comparten el mismo punto de la grilla.
Luego se subdividen las celdas que contienen los vértices y se vuelven a asignar puntos de
la grilla (paso 2). Se ha asignado un punto colgante a un vértice y se elimina la irregularidad
subdividiendo la celda que contiene a dicho punto.

N A
L A .
/ “a

Figura 10: Asignacién de puntos (pasos 2y 3).

Al finalizar el paso 3 anterior se ha generado un conflicto entre dos vértices y deben subdi-
vidirse las celdas que los contienen (paso 4). Luego de la subdivisiéon un punto de asignacién
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se ha tornado colgante y debe subsanarse esta condicion subdiviendo la celda que lo contiene
(paso 5).

N N
AN AN
o =
1 1

Figura 11: Asignacién de puntos (pasos 4 y 5).

Ahora puede comenzar el trazado de los lados usando Bresenham eligiendo los puntos de la
grilla més cercanos a la recta. Si algtin punto seleccionado es colgante se subdivide la celda que
lo contiene. En la figuras 12 y 13 se muestran los puntos obtenidos para cada lado en rojo.

\

A N

o

L AT LA
ﬁ

Figura 12: Trazado de primer y segundo lados (pasos 6,7, 8 y 9).

Luego debe efectuarse el ajuste al contorno de la poligonal de Bresenham (paso 11).
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Figura 13: Trazado de tercer lado (paso 10) y ajuste al contorno (paso 11).

Finalmente se realiza la diagonalizacion de los cuadrilteros interiores (pasol2) y la elimi-
nacion de las celdas exteriores (paso 13) como se muestra en la figura 14.

Figura 14: Diagonalizacién (paso 12) y eliminacién de celdas exteriores (paso 13).

Al finalizar este proceso se deben eliminar los nodos colgantes (paso 14) para obtener la
malla final.

Figura 15: Eliminacién de nodos colgantes (paso 14) y malla final.
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S. CONCLUSIONES

Se ha presentado un generador de mallas triangulares usando quadtrees y el algoritmo de
Bresenham. La metodologia es mds simple que otras presentadas previamente (Shephard et al.,
1986; Frey y George, 2008), ya que no requiere patrones especiales de subdivision de cuadri-
lateros en el contorno y sélo utiliza patrones para tridngulos para eliminar puntos colgantes.
La utilizacion del algoritmo de Bresenham permite la deteccion de las celdas de contorno de
manera simple y efectiva. Si bien se han asumido contornos poligonales es posible incorporar
informacion de la curvatura en cada segmento mediante NURBS o splines para mallar contornos
curvos. Ademds, podria extenderse la metodologia a 3 dimensiones para mallas de tetraedros
adaptando las operaciones necesarias.
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