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Resumen: El presente trabajo sintetiza una investigacion matematica y algoritmica del autor.
En el mismo se resumiran descubrimientos relacionados al mapeo de polinomios
trigonométricos restringidos, los cuales se han denominado Funciones Asincronica Senoidales
(FAS), mapeados en matrices reales de dimension afin, denominadas Matrices Asincronicas
Senoidales (MAS). Del andlisis de esos mapeos, surgirdn una serie de propiedades y
aplicaciones, las cuales se presentaran y ejemplificaran a lo largo del presente. Dada la
naturaleza necesariamente resumida del presente trabajo, se ha balanceado su contenido, de tal
modo que las bases matematicas mencionadas sean claras y suficientes, pero dejando espacio
para los ejemplos y aplicaciones. Las aplicaciones brindaran la posibilidad — inédita, a juicio
del autor — de identificar las frecuencias componentes de una seiial basada en polinomios
trigonométricos por métodos algebraicos, distintos y novedosos respecto a las Series de Fourier,
y con mayor flexibilidad algoritmica para el tratamiento y reconstruccion con respecto a sefiales
ponderadas y/o definidas en intervalos (picewise).

Keywords: Trigonometric Polynomials, Recursivity.

Abstract: This work summarizes the author's algorithmic and mathematical research. It summarizes
discoveries related to the mapping of restricted trigonometric polynomials, which have been called
Asynchronous Sinusoidal Functions (ASF), mapped onto certain reals matrices, called Asynchronous
Sinusoidal Matrices (ASM). From the analysis of these mappings, a series of properties and applications
will emerge, which will be presented and exemplified throughout. Given the necessarily summarized
nature of this work, its content has been balanced so that the aforementioned mathematical foundations
are clear and sufficient, while leaving room for examples and applications. The applications will provide
the possibility - unprecedented, in the author's point of view - of identifying the component frequencies
of a signal based on trigonometric polynomials using algebraic methods, which are distinct and novel
with respect to Fourier Series, and with greater flexibility with respect to weighted and/or interval-
defined (picewise) signals.
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INTRODUCCION

El presente trabajo esta integramente orientado al andlisis de la relacion de secuencias
numeéricas cuya expresion funcional corresponden a polinomios trigonométricos finitos y
restringidos, los cuales se han denominado Funciones Asincronicas Senoidales (FAS), y su
correspondiente mapeo en matrices de un tamafio adecuado para tales definiciones. Dichas
matrices se han denominado Matrices Asincronicas Senoidales (MAS). Originado en una
investigacion algoritmica, esta ha conllevado a descubrimientos matematicos fundamentales.
Se presentaran los descubrimientos, las propiedades y las aplicaciones derivadas de aquellas

1.1 Definicion de acronimos

Los siguientes acronimos seran de uso comun en todo el trabajo:

FAS: Funcion Asincronica Senoidal.

MAS: Matriz Asincronica Senoidal.

FPS: Factorizacion Paramétrica Senoidal.

DFT: Discrete Fourier Transform (Transformada Discreta de Fourier)

2 DEFINICIONES PRELIMINARES

Las siguientes definiciones no difieren significativamente de sus homologos y/o
equivalentes en literatura cientifica, mas precisamente en referencias de algebra lineal, analisis
funcional, tratamiento de sefiales. Pero dado que — a juicio del autor — siempre hay un margen
de interpretacion o diferencia segln la vertiente invocada, ha considerado menester consolidar
esos conceptos en las siguientes definiciones, de invocacion general a lo largo del presente.
2.1 Vector de Evolucion

El Vector de Evolucion es un vector real de n x 1, que pos multiplica a una matriz de tamafio
afin. A modo ilustrativo, en el presente desarrollo tendrd un rol similar al vector de Estado en
los procesos (cadenas) de Markov.

2.2 Matriz de Evolucion

Analogamente al Vector de Evolucion, la Matriz de Evolucion es una matriz cuadrada real
que pos multiplica a una matriz de tamano correspondiente

2.3 Matriz Semilla

La Matriz Semilla sera una matriz cuadrada real. En general, es la matriz que serd pos
multiplicada por el Vector de Evolucion o la Matriz de Evolucion.

2.4 Matriz Larga

Una Matriz Larga es una matriz real en la cual el nimero de filas es un multiplo del nimero
de columnas.

2.5 Determinante Enventanado

El concepto de Determinante Enventanado aplica al calculo de una sub matriz cuadrada de
tamafio 2n, tomada de una Matriz Larga de tamafio m x 2n (con m > 2n),
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2.6 Vector Consecutivo

El Vector Consecutivo es una columna con paso incremental con respecto a la MAS de
referencia, y basado en la misma FAS. Simbolicamente:

Veons(ij) = Fas(x + p;i + k241,10, 6, 0).

Y tendra tantos términos como filas la MAS referida.

3 FUNCIONES ASINCRONICAS SENOIDALES (FAS)
3.1 Definicion

Una Funcién Asincronica Senoidal de grado n es un polinomio trigonométrico de # términos
con variable real y aplicado en los reales, en el cual en cada termino la funcion senoidal esta
asociada a respectivos pesos y frecuencias'. A diferencia de las series de Fourier, la definicion
involucra una de las dos funciones a saber, seno o coseno.

Sea:
Fus(x,n,0,C):x € R,60 € R",C € R"\n € N - R\ Fu5(x,n,0,C) =
Yiz1 Cicos(x.6)) (D

Donde:
nenN
x € R,0 € R",C € R"
91¢0, 9i¢7”7T+9jVT,i,jE N

3.2 FAS - ejemplos

A modo de ejemplo, se presentan a continuacion algunas FAS de distintos grados.
3.2.1 FAS - Grado 1

Fa5(x,1,0,C) = 1.7847.cos(7.2984x)

Donde:
C=1.7847
0 =7.2984
XE R
n=1
3.2.2 FAS - Grado 2

F45(x,2,0,C) =1.057.cos(0.75x) + 3.271.c0s(2.915x)
Donde:
¢, = 1.057; C, = 3.271
XER

IEsta frecuencia, como se ver4, es arbitraria, no implica ninguna relacién con las frecuencias de los otros sumandos del
polinomio, de aqui la ‘Asincronia’, como contraparte a la ‘Sincronia’ obtenida en el calculo simbélico de las Series de Fourier.
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4 MATRIZ ASINCRONICA SENOIDAL (MAS)

Una Matriz Asincronica Senoidal (MAS) de tamafio 2n es una matriz
cuadrada, resultante del mapeo de una FAS de grado n a dicha matriz.
La Matriz Asincrénica Senoidal tiene dos parametrias asociadas:

e Lapropiade la FAS que se mapea, es decir:

o Elvalor inicial de la variable independiente (x)

o Pesos

o Frecuencias

e Lapropiadela MAS:

o PasosFila

o Pasos Columna

o Asuvez, esta parametria particular puede ser:
= Regular: pasos regulares para filas y/o columnas
» Irregular: pasos distintos para cada fila y/o columna
= Hibrida: regular por filas, irregular por columnas o

viceversa.

NIAS(FAS)ZHX2r1 t R - :RZn \ MASi,j = FAS(f(X; i;j); n, e, C) =
Yi=1 Ckcos(f(x,1,j).01); 1),k €N 2)

Donde f(x,i,j) = x + iP + jK; P,K € R, es una funcién lineal, arbitraria en
los reales. Siendo i, j los indices de fila y columna del término en la matriz, y
P, K, los pasos fila y columna en la parametria de la MAS.

4.1 MAS - Semblanza

Una MAS es por tanto una matriz cuadrada real de tamafio 2n, en la cual se mapea una FAS
de grado n. Aparte de la parametria que ‘hereda’ de la FAS referida, se incorpora una
parametria propia de la matriz (a saber, pasos — para la variable independiente — de filas y
columnas). Lo que implica para la expresion de la FAS asociada y mapeada en cada término
un cambio de variable, ya que la variable independiente (x) se trasforma por una suma
ponderada de los indices fila y columna. Dicha transformacion es /ineal. Se destaca los dos
niveles de parametria, el propio de la FAS mapeada (pesos y frecuencias, valor inicial de la
variable independiente) y el propio de la MAS (pasos entre filas y columnas, los cuales pueden
regulares, irregulares o hibridos).

S5 MAS - PROPIEDADES

Se han identificado propiedades interesantes para las FAS de grado n, y su relacion con su
mapeo a una MAS de orden (dimension) 2n. La primera es la siguiente:

5.1 Teorema: valor del determinante de una MAS

El determinante de una Matriz Asincronica Senoidal es independiente del valor de la variable
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libre, dependiendo exclusivamente de las parametrias de la FAS mapeada y de la MAS asociada
a aquella.

5.2 Demostracion

Para la demostracion del teorema, se factoriza la MAS en la siguiente

5.2.1 Factorizacion Paramétrica Senoidal (FPS)

Una MAS puede ser factorizada en 4 matrices, como se expresa en las siguientes

ecuaciones:
2nx2n
Z?zl(Ci cos(6;x)) Z?zl(Cicos (6;[x + K3n])
MAS = . . =
S (Cicos Oylx + ponl) o D (Cicos (B1x + pon + Konl))
M,. Mc.My. M, (3)
Donde:
M, =
cos(06,) cos(06,) .. cos(06,) —sin(06,) —sin(06,) .. —sin(08,) |?"**"
cos(01p1) cos(Ozp1) .. c0s(Opp1) —sin(O1p1) —sin(Ozp1) ... —sin(B,py)
cos(01 pzn) €0S(O2P2n) .. €OS(OspPzn) —sin(O1pzn) —sin(Ozpzn) ... —sin(Ospan)
(4)
Mc= diag(Cl, Cz, very Cn, Cl, Cz, ey Cn). (5)
My =
cos(x6;) 0 0 sin(x6,) 0 0 anxzn
0 cos(x6,) .. 0 0 sin(x6;) 0
sin(x6;) 0 0 cos(x6,) —cos(x6;)
sin(x6;) ... —cos(x6,) ...
0 0 0
0 0 0 sin(x6,) —cos(x6,,)
(6)
c0s(00;) €os(k101) .. €OS(Kpn61)>" "
_|cos(06,) cos(k,16,) ... cos(k2,6n)
M = sin(00,) sin(k;6;) .. sin(x,,6;) (7)
sin(06,) sin(k;6;) .. sin(k;,6,)

Para todos los casos:
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O,: frecuencia i — esima
C;:pesoi— esimo
Para [Mp; M¢; My; MK]: p,:paso filai — esimo
K;: paso columnai — esimo
x:variable independiente

La verificacion de esta factorizacion es inmediata, surge de la aplicacion de las
identidades trigonométricas siguientes:

cos (a + ) = cos(a)cos (B) + sin(a)sin (B) (8)
sin (a £ B) = sin(a)cos (B) * cos(a)sin (B) (9)
(Piskunov, 1980).

5.2.2 FPS — denominaciones y caracteristicas

A efectos de identificar conceptualmente las matrices factores, previamente
definidas, se denominaran a continuacion:

M,,: Matriz paso fila
M¢: Matriz de Pesos
M,: Matriz de la variable libre
M, : Matriz paso columna

La FPS permite factorizar una MAS en 4 matrices bien diferenciadas, las de los
extremos del producto ( M, y M,.) son puramente paramétricas, es decir: sus términos
excluyen la variable independiente, al igual que la Matriz de Pesos M , siendo ésta una
matriz Diagonal que repite los Coeficientes ponderadores en orden; y solo la matriz
intermedia (My, de la variable libre) en tal producto, incluye la variable independiente,
asociada a las correspondientes frecuencias por columna. Cabe destacar que M, se
construye en base a las frecuencias (de la FAS asociada), y los pasos fila, mientras M,
se asocia a las mencionadas frecuencia y los pasos columna de la MAS, asi factorizada.

5.2.3 FPS — conclusion

De acuerdo a las matrices factores asi definidas en la FPS, s6lo una de ellas esta
asociada a la variable independiente. Y esa matriz es unitaria, v.g: el valor de su
determinante es 1. Con lo que la demostracion es completa.

6 FPS - COROLARIOS

De la demostracion anterior, se destacaran corolarios de aplicacion inmediata, a saber:

6.1 FAS —recursividad lineal
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Por la FPS se puede inferir que las FAS de grado n son recursivas lineales de orden 2n?,

6.2 Vector de Evolucion del sistema ampliado
Sea el sistema ampliado:
(Mys|Veons) (10)

Constituido por la MAS y el Vector Consecutivo. Por las propiedades de la FPS, el Vector
de Evolucion (solucion del sistema), es puramente paramétrico. Es decir, depende —
exclusivamente — de las frecuencias de la FAS (base del mapeo), y de los pasos fila y columna
de la MAS, respectivamente. Su calculo se desprende del teorema (regla) de Cramer. Y al
calcularse como un cociente de determinantes, es puramente paramétrico. Y — por la misma
razon — se cancela en su expresion los pesos asociados a cada término de la FAS base.

6.3 Vector de Evolucion — Ejemplos para pasos regulares

Se presenta a continuacion las expresiones del Vector de Evolucion para MAS regulares de
ordenes 2, 3 y 4.

6.3.1 Vector de Evolucion MAS - orden 2

[ - (12)
2 cos(OkK)

6.3.2 Vector de Evolucion MAS - orden 4

-1
2[cos(kO,) + cos(kB,)]

Vevz) = —2[1+ 2cos(kB1)cos(k0,)] 12)
2[cos(kB,) + cos(kB,)]
6.3.3 Vector de Evolucion MAS - orden 6
Vevi) =

-1
2[cos(KB,) + cos(KB,) + cos(KB3)]
—4[cos(KO1)cos(KB,) + cos(KB;)cos(KO3) + cos(KO1)cos(KBO3)]| — 3
4[2.cos(KO1)cos(KB;)cos(KO3) + cos(KO,) + cos(KO,) + cos(KO3)]
—4[cos(KO1)cos(KB,) + cos(KB;)cos(KO3) + cos(KO1)cos(KBO3)]| — 3
2[cos(KB,) + cos(KB,) + cos(KB3)]

(13)
En los casos anteriores, el parametro K corresponde al paso columna.

7 FAS - IDENTIFICACION ALGEBRAICA DE FRECUENCIAS

De las expresiones del vector de Evolucion para distintos ordenes, surgira un método para

2E ‘grado’ aplica a la cardinalidad de términos del polinomio trigonométrico (v.g: la FAS), mientras el ‘orden’ refiere al orden de la
recursividad.
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la identificacion de las frecuencias componentes de la FAS base. Dicho método asocia las
expresiones del vector de evolucion a una matriz compaiera (la cual surge como la solucion de
un sistema <MAS|MASconsecutiva >, €s decir donde se desplaza la MAS inicial una columna a la
izquierda), sobre la cual — finalmente — se calculan los valores propios (O’Connor, 2001). Y de
ellos surge las frecuencias componentes de la FAS base, v.g: las frecuencias de la sefial
mapeada. Ejemplo: para una Matriz compafera asociada a un Vector de Evolucion de orden 2:

Eigenvalues [(1) ) C(:sl(e)] = A1, = cos(O) £ /cos(0)? — 1 (14)

8 FAS - ALGORITMO PARA LA RECONSTRUCCION DE UNA SENAL
NUMERICA

De lo anterior, surge un algoritmo que permite:
e Identificar las frecuencias componentes de una FAS base de una senal o bien su
aproximacion.
e A partir de la identificacion de las frecuencias, determinar los pesos y pasos (filas y
columnas) que optimicen la aproximacion.

Es de destacar que tal algoritmo puede operar sobre matrices largas y con cierta bondad de
ajuste respecto a sefales con ruido (para el caso: FAS distorsionadas con ruido aleatorio).

8.1 Algoritmo de reconstruccion — ventajas comparativas

El algoritmo descrito presenta ventajas comparativas para sefiales andlogas a FAS o
aproximadas, pero donde en el mapeo matricial han operado ponderaciones por filas y/o
desplazamientos. Para ilustrarlo, se presentara un ejemplo de aplicacion de Series de Fourier
para aproximar una sefial basada en un polinomio trigonométrico de s6lo 2 frecuencias, pero
definido por intervalos, para cada uno de los cuales se ha operado un escalado y una fase
distinta.

8.2 Serie de Fourier continua sobre la funcion

Como puede observarse en la figura 2 la aproximacion continua, utilizando 10 frecuencias
es pobre, debido a la sensibilidad de esta técnica respecto a la ponderacion y desfasado
(Fenomeno de Gibbs) (O’Neil, 2004). El algoritmo basado en FAS subsana ese problema,
debido a que las ponderaciones y fases (para el mapeo por fila) son transparentes en su
tratamiento.

Figura 1: Sefial trigonométrica definida por intervalos.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 879-889 (2025) 887

Aproximaciones de Fourier r=10 (negro)

Figura 2: Aproximacion continua por Series de Fourier (10 frecuencias).

8.3 Ejemplo: DFT sobre la funcion

Como puede observarse en la figura 4 la aplicacion de la DFT a la sefial discretizada (40
valores, paso unitario) genera al menos 15 frecuencias, no despreciables (Mannolakis, 2010).
Nuevamente: las frecuencias constituyentes son solo dos, como puede verificarse en la
definicion funcional.

/

Figura 3: Graficacion discreta de la sefial anterior.

Figura 4: Frecuencias generadas por la aplicacion de DFT a la sefial discretizada.

9 EJEMPLOS DE APLICACION Y PARAMETRIA RESULTANTE

De acuerdo a la definicion de las FAS y los principios algoritmicos mencionados, la
parametria necesaria para la reconstruccion de una sefial mapeada a una matriz larga
(correspondiente al espacio afin a una/s MAS exactas o aproximadas) define el Ratio de
Compresion. Este tiene dos formas, a saber: si la sefial es continua o bien ponderada por
intervalos (v.g: filas en el mapeo). Las correspondientes expresiones son las siguientes:

1
Rc = E (15)
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N+M
Re = (16)

Donde: R.: ratio de compresion (continuo), Rp: ratio de compresion ponderado, M =
cantidad de columnas, N = cantidad de filas, ambos naturales.

Figura 5: Representacion continua del ratio de compresion. Este decae asintdticamente con el
incremento de columnas y filas.

10 ALGUNOS EJEMPLOS DE RECONSTRUCCION

A continuacidn, se listan algunos ejemplos simples de reconstruccion de sefiales mapeadas
a matrices largas, con métricas de precision y el ratio de compresion mencionado.
Las referencias de las columnas son las siguientes:

Grado: el grado de la FAS mapeada

Frecuencias: listado de frecuencias (separadas por “;”; para grados mayores se detalla
la funcion generadora)

Pesos: listado de pesos (asociados a las frecuencias, por su orden, mismas
consideraciones para grados mayores)

Filas/columnas: la cantidad de filas y columnas de la matriz larga mapeada
Cardinalidad: la cantidad de elementos de la matriz

R: coeficiente de correlacion (sefial reconstruida paramétricamente vs. sefial original)
Ratio: el ratio de compresion (tal cual definido previamente, es decir cardinalidad de
los parametros necesario para la reconstruccion vs. cardinalidad de elementos de la
sefial mapeada)

Filas / Cardinalidad R Ratio Ratio
Grado Frecuencias Pesos columnas (continuo) | (ponderado
por filas)

4 0.25;1.1547;2.3;5 1;2;4:6;11 80/4 320 1.000 0.0315 0.3
7 0.1;1.12;1.357;2.37;3. | 3;-2;1.5;1;0.5;8;- 140/7 980 0.999874 0.0148 0.174
65:4.78,6.5401 4.21;3.05
11 f->n*n/3 p->cos(n)+0.3*n 220/11 2420 0.99954 0.1 0.29
50 f->cos(n*n/3)+0.05%n p->In(n)+0.1*n 1000/50 5000 0.998741 0.1 0.22

Tabla 1: Listado de Sefiales basadas en FAS y su reconstruccion. R es el coeficiente de correlacion.

11 CONCLUSIONES

Los hallazgos resumidos en el presente, son aportes en los ambitos de trigonometria,

Copyright © 2025 Asociacion Argentina de Mecénica Computacional



http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 879-889 (2025) 889

recursividad y algebra lineal. Y amplian las posibilidades de andlisis funcional, como asi
también sientan las bases para algoritmia alternativa en el tratamiento de sefales.
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