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Resumen: El presente trabajo sintetiza una investigación matemática y algorítmica del autor. 

En el mismo se resumirán descubrimientos relacionados al mapeo de polinomios 

trigonométricos restringidos, los cuales se han denominado Funciones Asincrónica Senoidales 

(FAS), mapeados en matrices reales de dimensión afín, denominadas Matrices Asincrónicas 

Senoidales (MAS). Del análisis de esos mapeos, surgirán una serie de propiedades y 

aplicaciones, las cuales se presentarán y ejemplificarán a lo largo del presente. Dada la 

naturaleza necesariamente resumida del presente trabajo, se ha balanceado su contenido, de tal 

modo que las bases matemáticas mencionadas sean claras y suficientes, pero dejando espacio 

para los ejemplos y aplicaciones. Las aplicaciones brindarán la posibilidad – inédita, a juicio 

del autor – de identificar las frecuencias componentes de una señal basada en polinomios 

trigonométricos por métodos algebraicos, distintos y novedosos respecto a las Series de Fourier, 

y con mayor flexibilidad algorítmica para el tratamiento y reconstrucción con respecto a señales 

ponderadas y/o definidas en intervalos (picewise). 

Keywords: Trigonometric Polynomials, Recursivity. 

Abstract: This work summarizes the author's algorithmic and mathematical research. It summarizes 

discoveries related to the mapping of restricted trigonometric polynomials, which have been called 

Asynchronous Sinusoidal Functions (ASF), mapped onto certain reals matrices, called Asynchronous 

Sinusoidal Matrices (ASM). From the analysis of these mappings, a series of properties and applications 

will emerge, which will be presented and exemplified throughout. Given the necessarily summarized 

nature of this work, its content has been balanced so that the aforementioned mathematical foundations 

are clear and sufficient, while leaving room for examples and applications. The applications will provide 

the possibility - unprecedented, in the author's point of view - of identifying the component frequencies 

of a signal based on trigonometric polynomials using algebraic methods, which are distinct and novel 

with respect to Fourier Series, and with greater flexibility with respect to weighted and/or interval-

defined (picewise) signals. 
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INTRODUCCIÓN 
 

El presente trabajo está íntegramente orientado al análisis de la relación de secuencias 

numéricas cuya expresión funcional corresponden a polinomios trigonométricos finitos y 

restringidos, los cuales se han denominado Funciones Asincrónicas Senoidales (FAS), y su 

correspondiente mapeo en matrices de un tamaño adecuado para tales definiciones. Dichas 

matrices se han denominado Matrices Asincrónicas Senoidales (MAS). Originado en una 

investigación algorítmica, esta ha conllevado a descubrimientos matemáticos fundamentales. 

Se presentarán los descubrimientos, las propiedades y las aplicaciones derivadas de aquellas 

1.1 Definición de acrónimos 

Los siguientes acrónimos serán de uso común en todo el trabajo: 

• FAS: Función Asincrónica Senoidal. 

• MAS: Matriz Asincrónica Senoidal. 

• FPS: Factorización Paramétrica Senoidal.  

• DFT: Discrete Fourier Transform (Transformada Discreta de Fourier) 

2 DEFINICIONES PRELIMINARES 

Las siguientes definiciones no difieren significativamente de sus homólogos y/o 

equivalentes en literatura científica, más precisamente en referencias de algebra lineal, análisis 

funcional, tratamiento de señales. Pero dado que – a juicio del autor – siempre hay un margen 

de interpretación o diferencia según la vertiente invocada, ha considerado menester consolidar 

esos conceptos en las siguientes definiciones, de invocación general a lo largo del presente. 

2.1 Vector de Evolución 

El Vector de Evolución es un vector real de n x 1, que pos multiplica a una matriz de tamaño 

afín. A modo ilustrativo, en el presente desarrollo tendrá un rol similar al vector de Estado en 

los procesos (cadenas) de Márkov. 

2.2 Matriz de Evolución 

Análogamente al Vector de Evolución, la Matriz de Evolución es una matriz cuadrada real 

que pos multiplica a una matriz de tamaño correspondiente 

2.3 Matriz Semilla 

La Matriz Semilla será una matriz cuadrada real. En general, es la matriz que será pos 

multiplicada por el Vector de Evolución o la Matriz de Evolución. 

2.4 Matriz Larga 

Una Matriz Larga es una matriz real en la cual el número de filas es un múltiplo del número 

de columnas. 

2.5 Determinante Enventanado 

El concepto de Determinante Enventanado aplica al cálculo de una sub matriz cuadrada de 

tamaño 2n, tomada de una Matriz Larga de tamaño m × 2n (con m > 2n), 
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2.6 Vector Consecutivo  

El Vector Consecutivo es una columna con paso incremental con respecto a la MAS de 

referencia, y basado en la misma FAS. Simbólicamente:  

   Vcons(i,j) =  FAS(ݔ + ௜ߩ + ,2௡+1ߢ n, ,ߠ  .(ܥ
 

Y tendrá tantos términos como filas la MAS referida. 

 

3 FUNCIONES ASINCRONICAS SENOIDALES (FAS) 

3.1 Definición 

Una Función Asincrónica Senoidal de grado n es un polinomio trigonométrico de n términos 

con variable real y aplicado en los reales, en el cual en cada termino la función senoidal está 

asociada a respectivos pesos y frecuencias1. A diferencia de las series de Fourier, la definición 

involucra una de las dos funciones a saber, seno o coseno. 

 

Sea: 

,ݔ)஺ௌܨ  ݊, ,ߠ ∋ ݔ :(ܥ  ܴ, ∋ ߠ  ܴ௡, ∋ ܥ  ܴ௡, ݊ ∈   ࣨ → ℛ ,ݔ)஺ௌܨ ∖ ݊, ,ߠ (ܥ =∑ .ݔ)ݏ݋௜ܿܥ ௜)௡௜=1ߠ          (1) 

 

Donde: { ݊ ∈ ∋ ݔࣨ    ℛ, ∋ ߠ  ܴ௡ , ∋ ܥ  ܴ௡ߠ௜ ≠ ௜ߠ ;0 ≠ ߨݎ + ,ݎ ∀௝ߠ ݅, ݆ ∈   ࣨ 

3.2 FAS - ejemplos  

A modo de ejemplo, se presentan a continuación algunas FAS de distintos grados. 

 

3.2.1 FAS - Grado 1 ࡿ࡭ࡲ(࢞, ૚, ,ࣂ (࡯ = ૚. ૠૡ૝ૠ. .ૠ)࢙࢕ࢉ ૛ૢૡ૝࢞) 
 

Donde:  

{C = 1.7847θ = ݔ7.2984 ∈  ℛ݊ = 1  

3.2.2 FAS - Grado 2 ࡿ࡭ࡲ(࢞, ૛, ,ࣂ (࡯ = ૚. ૙૞ૠ. .૙)࢙࢕ࢉ ૠ૞࢞) + ૜. ૛ૠ૚. .૛)࢙࢕ࢉ ૢ૚૞࢞) 
Donde:  {1ܥ = 2ܥ ;1.057 = 1ߠ3.271 = 2ߠ ;0.75 = ݔ2.915 ∈  ℛ  

 

 
1Esta frecuencia, como se verá, es arbitraria, no implica ninguna relación con las frecuencias de los otros sumandos del polinomio, de aquí la ‘Asincronía’, como contraparte a la ‘Sincronía’ obtenida en el cálculo simbólico de las Series de Fourier. 
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4 MATRIZ ASINCRONICA SENOIDAL (MAS) 

Una Matriz Asincrónica Senoidal (MAS) de tamaño 2n es una matriz 

cuadrada, resultante del mapeo de una FAS de grado n a dicha matriz.  

La Matriz Asincrónica Senoidal tiene dos parametrías asociadas: 

• La propia de la FAS que se mapea, es decir: 

o El valor inicial de la variable independiente (x)  

o Pesos  

o Frecuencias 

• La propia de la MAS: 

o Pasos Fila 

o Pasos Columna 

o A su vez, esta parametría particular puede ser: 

▪ Regular: pasos regulares para filas y/o columnas 

▪ Irregular: pasos distintos para cada fila y/o columna 

▪ Hibrida: regular por filas, irregular por columnas o 

viceversa. 

 MAS(FAS)2nx2n ∶  ℛ → ℛ2௡ ∖  MASi,j =  FAS(f(x, i, j), n, θ, C) = ∑ Ckcos(f(x, i, j). θk); i, j, k ∈nk=1 ࣨ                                                                                    (2) 

 

Donde ݂(ݔ, ݅, ݆) = ݔ + ࡼ݅ + ࡷ,ࡼ;ࡷ݆ ∈  ℛ , es una función lineal, arbitraria en 

los reales. Siendo i, j los índices de fila y columna del término en la matriz, y ࡷ,ࡼ, los pasos fila y columna en la parametría de la MAS. 

4.1 MAS - Semblanza 

 

Una MAS es por tanto una matriz cuadrada real de tamaño 2n, en la cual se mapea una FAS 

de grado n. Aparte de la parametría que ‘hereda’ de la FAS referida, se incorpora una 

parametría propia de la matriz (a saber, pasos – para la variable independiente – de filas y 

columnas).  Lo que implica para la expresión de la FAS asociada y mapeada en cada término 

un cambio de variable, ya que la variable independiente (x) se trasforma por una suma 

ponderada de los índices fila y columna. Dicha transformación es lineal. Se destaca los dos 

niveles de parametría, el propio de la FAS mapeada (pesos y frecuencias, valor inicial de la 

variable independiente) y el propio de la MAS (pasos entre filas y columnas, los cuales pueden 

regulares, irregulares o híbridos).  

 

5 MAS - PROPIEDADES 

Se han identificado propiedades interesantes para las FAS de grado n, y su relación con su 

mapeo a una MAS de orden (dimensión) 2n. La primera es la siguiente: 

5.1 Teorema: valor del determinante de una MAS 

El determinante de una Matriz Asincrónica Senoidal es independiente del valor de la variable 
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libre, dependiendo exclusivamente de las parametrías de la FAS mapeada y de la MAS asociada 

a aquella. 

5.2 Demostración 

Para la demostración del teorema, se factoriza la MAS en la siguiente 

5.2.1  Factorización Paramétrica Senoidal (FPS) 

Una MAS puede ser factorizada en 4 matrices, como se expresa en las siguientes 

ecuaciones: 

 

ܵܣܯ = | ∑ ௜ܥ) cos(ߐ௜ݔ))௡௜=1 … ∑ ݔ]௜ߐ) ௜cosܥ) + …2௡]))௡௜=1ߢ … …∑ ݔ]௜ߐ) ௜cosܥ) + ρ2௡])௡௜=1 … ∑ ݔ]௜ߐ) ௜cosܥ) + ρ2௡ + 2௡]))௡௜=1ߢ |2௡ ௫ 2௡ .ρܯ =  ఑                                                                                                                                   (3)ܯ.xܯ.Cܯ 

Donde: ܯρ =
||
cos(01ߐ) cos(02ߐ) … cos(0ߐ௡) −sin(01ߐ) −sin(02ߐ) … −sin(0ߐ௡)cos(1ߐ ρ1) cos(2ߐ ρ1) … cos(ߐ௡ ρ1) −sin(1ߐ ρ1) −sin(2ߐ ρ1) … −sin(ߐ௡ ρ1)… … … … … … … …… … … … … … … …cos(1ߐ ρ2௡) cos(2ߐ ρ2௡) … cos(ߐ௦ ρ2௡) −sin(1ߐ ρ2௡) −sin(2ߐ ρ2௡) … −sin(ߐ௦ ρ2௡)|

|2௡ ௫ 2௡
        

 

 (4) 

 
MC = diag(C1, C2, …, Cn, C1, C2 , .... , Cn).                                          (5) 

xܯ  =

||
|cos(1ߐݔ) 0 … 0 sin(1ߐݔ) 0 … 00 cos(2ߐݔ) … 0 0 sin(2ߐݔ) … 0… … … … … … …sin(1ߐݔ) 0 0 cos(ߐݔ௡) − cos(1ߐݔ)… sin(2ߐݔ) … … … −cos(2ߐݔ)… … …… … 0 0 0 …… … … … … … … … .0 0 0 sin(ߐݔ௡) − cos(ߐݔ௡)|

||
2௡ ௫ 2௡

               
(6) 

 

఑ܯ = ||
cos(01ߐ) cos(1ߐ1ߢ) … cos(2ߢ௡1ߐ)… … … …cos(0ߐ௡) cos(ߐ1ߢ௡) … cos(2ߢ௡ߐ௡)sin(01ߐ) sin(1ߐ1ߢ) … sin(2ߢ௡1ߐ)…sin(0ߐ௡) sin(ߐ1ߢ௡) … sin(2ߢ௡ߐ௡)|

|2௡ ௫ 2௡
                                  (7) 

Para todos los casos: 
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Para [ ܯρ; :[఑ܯ;xܯ;Cܯ  {  
:݅ߐ   frecuencia i − esimaܑ࡯: peso i − esimoρ1: paso fila i − esimoߢi: paso columna i − esimoݔ:  ݁ݐ݊݁݅݀݊݁݌݁݀݊݅ ݈ܾ݁ܽ݅ݎܽݒ

 

La verificación de esta factorización es inmediata, surge de la aplicación de las 

identidades trigonométricas siguientes: 

 cos ( ߙ ± (ߚ = cos(ߙ)cos (ߚ) ∓ sin(ߙ)sin (ߚ)                                  (8) 

 sin ( α ± β) = sin(α)cos (β) ± cos(α)sin (β)                                  (9) 

 

(Piskunov, 1980). 

5.2.2  FPS – denominaciones y características 

A efectos de identificar conceptualmente las matrices factores, previamente 

definidas, se denominarán a continuación: 

 

{ 
఑ :Matriz paso columnaܯx:Matriz de la variable libreܯC:Matriz de Pesosܯ ρ:Matriz paso filaܯ    

 

La FPS permite factorizar una MAS en 4 matrices bien diferenciadas, las de los 

extremos del producto ( ܯρ ܯ ݕ఑) son puramente paramétricas, es decir: sus términos 

excluyen la variable independiente, al igual que la Matriz de Pesos  ܯC , siendo ésta una 

matriz Diagonal que repite los Coeficientes ponderadores en orden; y sólo la matriz 

intermedia (ܯx, de la variable libre) en tal producto, incluye la variable independiente, 

asociada a las correspondientes frecuencias por columna. Cabe destacar que  ܯρ se 

construye en base a las frecuencias (de la FAS asociada), y los pasos fila, mientras  ܯ఑ 

se asocia a las mencionadas frecuencia y los pasos columna de la MAS, así factorizada. 

5.2.3  FPS – conclusion 

De acuerdo a las matrices factores así definidas en la FPS, sólo una de ellas está 

asociada a la variable independiente. Y esa matriz es unitaria, v.g: el valor de su 

determinante es 1. Con lo que la demostración es completa. 

 

6 FPS – COROLARIOS 

De la demostración anterior, se destacarán corolarios de aplicación inmediata, a saber: 

6.1 FAS – recursividad lineal 
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Por la FPS se puede inferir que las FAS de grado n son recursivas lineales de orden 2n2.  

6.2 Vector de Evolución del sistema ampliado 

Sea el sistema ampliado: ⟨ܯ஺ௌ| ௖ܸ௢௡௦⟩                                                                      (10) 

Constituido por la MAS y el Vector Consecutivo.  Por las propiedades de la FPS, el Vector 

de Evolución (solución del sistema), es puramente paramétrico. Es decir, depende – 

exclusivamente – de las frecuencias de la FAS (base del mapeo), y de los pasos fila y columna 

de la MAS, respectivamente. Su cálculo se desprende del teorema (regla) de Cramer. Y al 

calcularse como un cociente de determinantes, es puramente paramétrico. Y – por la misma 

razón – se cancela en su expresión los pesos asociados a cada término de la FAS base. 

6.3 Vector de Evolución – Ejemplos para pasos regulares 

Se presenta a continuación las expresiones del Vector de Evolución para MAS regulares de 

órdenes 2, 3 y 4. 

6.3.1  Vector de Evolución MAS - orden 2 

 [ −12 cos(ߢߐ)]                                                                           (11) 

 

6.3.2  Vector de Evolución MAS - orden 4 

(૛)࢜ࡱࢂ = [ −૚૛[࢙࢕ࢉ(ࢲࣄ૚) + ૛[૚−[(૛ࢲࣄ)࢙࢕ࢉ + ૛࢙࢕ࢉ(ࢲࣄ૚)࢙࢕ࢉ(ࢲࣄ૛)]૛[࢙࢕ࢉ(ࢲࣄ૚) + [(૛ࢲࣄ)࢙࢕ࢉ ]                                         (12) 

6.3.3  Vector de Evolución MAS - orden 6 ࢜ࡱࢂ(૜) =

[  
   

−૚૛[࢙࢕ࢉ(ࢲࣄ૚) + (૛ࢲࣄ)࢙࢕ࢉ + (૛ࢲࣄ)࢙࢕ࢉ(૚ࢲࣄ)࢙࢕ࢉ]૝−[(૜ࢲࣄ)࢙࢕ࢉ + (૜ࢲࣄ)࢙࢕ࢉ(૛ࢲࣄ)࢙࢕ࢉ + [(૜ࢲࣄ)࢙࢕ࢉ(૚ࢲࣄ)࢙࢕ࢉ − ૜૝[૛. (૜ࢲࣄ)࢙࢕ࢉ(૛ࢲࣄ)࢙࢕ࢉ(૚ࢲࣄ)࢙࢕ࢉ + (૚ࢲࣄ)࢙࢕ࢉ + (૛ࢲࣄ)࢙࢕ࢉ + (૛ࢲࣄ)࢙࢕ࢉ(૚ࢲࣄ)࢙࢕ࢉ]૝−[(૜ࢲࣄ)࢙࢕ࢉ + (૜ࢲࣄ)࢙࢕ࢉ(૛ࢲࣄ)࢙࢕ࢉ + [(૜ࢲࣄ)࢙࢕ࢉ(૚ࢲࣄ)࢙࢕ࢉ − ૜૛[࢙࢕ࢉ(ࢲࣄ૚) + (૛ࢲࣄ)࢙࢕ࢉ + [(૜ࢲࣄ)࢙࢕ࢉ ]  
                            

(13) 

En los casos anteriores, el parámetro ࣄ corresponde al paso columna. 

7 FAS – IDENTIFICACION ALGEBRAICA DE FRECUENCIAS 

De las expresiones del vector de Evolución para distintos órdenes, surgirá un método para 

 
2 El ’grado’ aplica a la cardinalidad de términos del polinomio trigonométrico (v.g: la FAS), mientras el ‘orden’ refiere al orden de la 

recursividad. 
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la identificación de las frecuencias componentes de la FAS base. Dicho método asocia las 

expresiones del vector de evolución a una matriz compañera (la cual surge como la solución de 

un sistema <MAS|MASconsecutiva >, es decir donde se desplaza la MAS inicial una columna a la 

izquierda), sobre la cual – finalmente – se calculan los valores propios (O’Connor, 2001). Y de 

ellos surge las frecuencias componentes de la FAS base, v.g: las frecuencias de la señal 

mapeada. Ejemplo: para una Matriz compañera asociada a un Vector de Evolución de orden 2: 

ݏ݁ݑ݈ܽݒ݊݁݃݅ܧ  [0 −11 2 cos(ϴ)] = 1,2ߣ = cos(ϴ) ± √cos(ϴ)2 − 1                 (14) 

8 FAS – ALGORITMO PARA LA RECONSTRUCCIÓN DE UNA SEÑAL 
NUMÉRICA 

De lo anterior, surge un algoritmo que permite:  

• Identificar las frecuencias componentes de una FAS base de una señal o bien su 

aproximación. 

• A partir de la identificación de las frecuencias, determinar los pesos y pasos (filas y 

columnas) que optimicen la aproximación. 

 

Es de destacar que tal algoritmo puede operar sobre matrices largas y con cierta bondad de 

ajuste respecto a señales con ruido (para el caso: FAS distorsionadas con ruido aleatorio). 

 

8.1 Algoritmo de reconstrucción – ventajas comparativas 

El algoritmo descrito presenta ventajas comparativas para señales análogas a FAS o 

aproximadas, pero donde en el mapeo matricial han operado ponderaciones por filas y/o 

desplazamientos. Para ilustrarlo, se presentará un ejemplo de aplicación de Series de Fourier 

para aproximar una señal basada en un polinomio trigonométrico de sólo 2 frecuencias, pero 

definido por intervalos, para cada uno de los cuales se ha operado un escalado y una fase 

distinta.  

8.2 Serie de Fourier continua sobre la función 

 

Como puede observarse en la figura 2 la aproximación continua, utilizando 10 frecuencias 

es pobre, debido a la sensibilidad de esta técnica respecto a la ponderación y desfasado 

(Fenómeno de Gibbs) (O’Neil, 2004). El algoritmo basado en FAS subsana ese problema, 

debido a que las ponderaciones y fases (para el mapeo por fila) son transparentes en su 

tratamiento. 

 

 

Figura 1: Señal trigonométrica definida por intervalos. 
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Figura 2: Aproximación continua por Series de Fourier (10 frecuencias). 

8.3 Ejemplo: DFT sobre la función 

 

Como puede observarse en la figura 4 la aplicación de la DFT a la señal discretizada (40 

valores, paso unitario) genera al menos 15 frecuencias, no despreciables (Mannolakis, 2010). 

Nuevamente: las frecuencias constituyentes son sólo dos, como puede verificarse en la 

definición funcional. 

 

 

Figura 3: Graficación discreta de la señal anterior. 

 

 

Figura 4: Frecuencias generadas por la aplicación de DFT a la señal discretizada. 

9 EJEMPLOS DE APLICACIÓN Y PARAMETRIA RESULTANTE 

De acuerdo a la definición de las FAS y los principios algorítmicos mencionados, la 

parametría necesaria para la reconstrucción de una señal mapeada a una matriz larga 

(correspondiente al espacio afín a una/s MAS exactas o aproximadas) define el Ratio de 

Compresión. Este tiene dos formas, a saber: si la señal es continua o bien ponderada por 

intervalos (v.g: filas en el mapeo).  Las correspondientes expresiones son las siguientes:      

 

 ܴ௖ = 1ே  (15) 
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ܴ௉ = ே+ெே.ெ                                                           (16) 

 

Donde: ܴ௖: ratio de compresión (continuo), ܴ௉: ratio de compresión ponderado, M = 

cantidad de columnas, N = cantidad de filas, ambos naturales. 

 

 

 Figura 5: Representación continua del ratio de compresión. Este decae asintóticamente con el 

incremento de columnas y filas. 

10 ALGUNOS EJEMPLOS DE RECONSTRUCCIÓN 

A continuación, se listan algunos ejemplos simples de reconstrucción de señales mapeadas 

a matrices largas, con métricas de precisión y el ratio de compresión mencionado.  

Las referencias de las columnas son las siguientes: 

• Grado: el grado de la FAS mapeada 

• Frecuencias: listado de frecuencias (separadas por “;”; para grados mayores se detalla 
la función generadora) 

• Pesos: listado de pesos (asociados a las frecuencias, por su orden, mismas 

consideraciones para grados mayores) 

• Filas/columnas: la cantidad de filas y columnas de la matriz larga mapeada  

• Cardinalidad: la cantidad de elementos de la matriz 

• R: coeficiente de correlación (señal reconstruida paramétricamente vs. señal original) 

• Ratio: el ratio de compresión (tal cual definido previamente, es decir cardinalidad de 

los parámetros necesario para la reconstrucción vs. cardinalidad de elementos de la 

señal mapeada) 

 

Grado Frecuencias Pesos 
Filas / 

columnas 
Cardinalidad R Ratio 

(continuo) 
Ratio 

(ponderado 
por   filas) 

4 0.25;1.1547;2.3;5 1;2;4;6;11 80/4 320 1.000 0.0315 0.3 

7 
0.1;1.12;1.357;2.37;3.

65;4.78;6.5401 

3;-2;1.5;1;0.5;8;-

4.21;3.05 
140/7 

980 0.999874 0.0148 0.174 

11 f->n*n/3 p->cos(n)+0.3*n 220/11 2420 0.99954 0.1 0.29 

50 f->cos(n*n/3)+0.05*n p->ln(n)+0.1*n 1000/50 5000 0.998741 0.1 0.22 

Tabla 1: Listado de Señales basadas en FAS y su reconstrucción. R es el coeficiente de correlación. 

11 CONCLUSIONES 

Los hallazgos resumidos en el presente, son aportes en los ámbitos de trigonometría, 
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recursividad y algebra lineal. Y amplían las posibilidades de análisis funcional, como así 

también sientan las bases para algoritmia alternativa en el tratamiento de señales. 
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