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Resumen. En los últimos años los autoencoders variacionales (VAE) se han consolidado como una he-

rramienta poderosa para aprender representaciones compactas y continuas de sistemas complejos. En el

presente trabajo se aplica un VAE convolucional a la tarea de predecir la evolución temporal en un siste-

ma de flujo granular simulado mediante el método de elementos discretos (DEM). Se entrena el modelo

para recibir como entrada dos imágenes consecutivas de la simulación y generar como salida las imáge-

nes de los pasos temporales siguientes. Posteriormente, se analiza el espacio latente resultante utilizando

Análisis de Componentes Principales (PCA), con el objetivo de evaluar si las representaciones latentes

capturan información relevante sobre el estado del sistema. Los resultados muestran que el modelo es

capaz de organizar los datos en regiones diferenciadas y con continuidad temporal, lo que constituye una

evidencia favorable de que el VAE ha aprendido variables de estado útiles para describir el sistema.

Keywords: Variational Autoencoder, Dimensionality Reduction, Granular Flows, PCA, Latent Repre-

sentations

Abstract. In recent years, variational autoencoders (VAEs) have established themselves as a powerful

tool for learning compact and continuous representations of complex systems. In this work, a convolutio-

nal VAE is applied to the task of predicting the temporal evolution in a granular flow system simulated by

the discrete element method (DEM). The model is trained to take as input two consecutive images from

the simulation and generate as output the images of the following time steps. Subsequently, the resulting

latent space is analyzed using Principal Component Analysis (PCA), with the aim of evaluating whether

the latent representations capture relevant information about the system’s state. The results show that

the model is capable of organizing the data into differentiated regions with temporal continuity, which

constitutes favorable evidence that the VAE has learned useful state variables to describe the system.
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1. INTRODUCCIÓN

Los flujos de materiales granulares son fenómenos complejos de gran interés en ingeniería

y en aplicaciones industriales, tales como el transporte de sólidos, almacenamiento en silos y

tolvas, y procesos de separación. La descripción matemática de estos sistemas suele abordar-

se mediante simulaciones de dinámica de partículas, conocidas como Método de Elementos

Discretos (DEM), que resuelven de manera explícita las leyes de Newton para cada partícula

(Cundall y Strack, 1979; Zhu et al., 2007, 2008). Si bien este enfoque es riguroso, su costo

computacional puede ser elevado, especialmente cuando se requieren múltiples simulaciones

para estudios paramétricos, optimización o control.

Una alternativa consiste en construir modelos de orden reducido que describan la dinámica

del sistema en términos de un número reducido de variables de estado. Tradicionalmente, la

reducción de dimensionalidad se ha llevado a cabo mediante técnicas como el Análisis de Com-

ponentes Principales (PCA), que transforma datos de alta dimensionalidad en un subespacio

lineal de menor dimensión (Pearson, 1901; Holmes et al., 2012). De igual forma, la Descompo-

sición en Valores Singulares (SVD) ofrece un método sistemático para aproximar datos de alta

dimensión a través de una descomposición ortogonal conocida como Descomposición en Mo-

dos Propios (POD) (Berkooz et al., 1993; Taira et al., 2017). Aunque la SVD fue desarrollada

originalmente para sistemas dinámicos basados en observaciones, no está diseñada para proce-

sar directamente secuencias de imágenes ni para identificar variables de estado sin información

adicional, lo que resulta fundamental para comprender la física subyacente en fenómenos com-

plejos (Chen et al., 2021). Estas metodologías han sido ampliamente utilizadas para simplificar

conjuntos de datos y facilitar la interpretación de modelos, aunque su carácter lineal limita su

efectividad frente a la complejidad propia de flujos granulares. Por estas razones, se ha recu-

rrido a extensiones no lineales del PCA mediante arquitecturas de redes neuronales conocidas

como autoencoders (Baldi y Hornik, 1989; Goodfellow et al., 2016). En este escenario, los

autoencoders se han consolidado como herramientas eficaces para descubrir representaciones

latentes que capturan la esencia dinámica de sistemas complejos. A diferencia de las técnicas

tradicionales lineales como PCA o POD (Pearson, 1901; Holmes et al., 2012), los autoenco-

ders permiten modelar relaciones no lineales y descomponer los sistemas en componentes con

mayor interpretabilidad física.

Aunque numerosas técnicas de aprendizaje automático han demostrado su eficacia para mo-

delar la dinámica de sistemas físicos, muchas de ellas requieren que las mediciones específicas

de las variables de estado sean conocidas. Por ejemplo, Brunton et al. (Brunton et al., 2016)

emplearon coordenadas espaciales y sus derivadas para modelar el sistema de Lorenz, mientras

que Champion et al. (Champion et al., 2019) utilizaron funciones base predefinidas para guiar

el entrenamiento de un autoencoder en la reconstrucción de observaciones. Adicionalmente,

otros autores han combinado redes neuronales con propiedades físicas conocidas para resol-

ver ecuaciones partiendo de variables de estado previamente definidas (Udrescu y Tegmark,

2020). Estos enfoques muestran una dependencia significativa de datos explícitos, lo que limita

la aplicabilidad de dichos métodos en escenarios donde tales datos son difíciles de obtener o

directamente no están disponibles.

Los Autoencoders Variacionales (VAE) constituyen una extensión probabilística de los auto-

encoders clásicos, en la que las variables latentes se modelan como distribuciones, típicamente

gaussianas, en lugar de puntos determinísticos (Kingma et al., 2014). Esta formulación permite

no sólo la reconstrucción de las entradas, sino también la generación de nuevas muestras y la

obtención de espacios latentes continuos y regularizados. En series temporales, los VAEs han
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demostrado ser capaces de aprender representaciones significativas de datos de alta dimensión,

que capturan de manera implícita factores como posición, movimiento y dinámica de los ob-

jetos (Gregor et al., 2015; Goroshin et al., 2015). Una de las ventajas principales de los VAEs

es su capacidad de compresión: las imágenes o secuencias de alta resolución se proyectan en

espacios latentes de dimensionalidad mucho menor, lo que permite representar el estado del

sistema con un número reducido de variables sin perder información relevante (Walker et al.,

2021). Estas representaciones compactas son útiles no sólo para almacenamiento eficiente, sino

también como base para modelos de orden reducido o para simulaciones aceleradas. La elección

de la dimensionalidad del espacio latente constituye un aspecto crítico ya que debe balancear

la capacidad de representación y la interpretabilidad. Métodos recientes permiten estimar la

dimensionalidad intrínseca de los datos a partir de propiedades estadísticas de los vectores la-

tentes, lo que abre nuevas posibilidades de análisis y optimización arquitectónica (Bonheme y

Grzes, 2022).

En trabajos previos se exploró la reducción de dimensionalidad en sistemas de partículas en

movimiento mediante autoencoders convolucionales, estableciendo una primera aproximación

a la representación comprimida de su dinámica (Bertone et al., 2024).

En este trabajo se propone un Autoencoder Variacional para modelar el flujo granular durante

la descarga de una tolva. A diferencia de un autoencoder determinista, el VAE impone una

distribución probabilística sobre el espacio latente, favoreciendo la continuidad y regularidad de

la representación, y permitiendo la generación de nuevos estados plausibles mediante muestreo.

El objetivo de este trabajo es doble. Por un lado, se busca verificar la capacidad del VAE para

predecir correctamente la evolución de la dinámica de partículas a corto plazo y, por otro lado,

analizar la estructura de su espacio latente para identificar si contiene información interpretable

sobre el estado del sistema.

2. METODOLOGÍA

2.1. Generación de datos

El conjunto de datos empleado fue generado computacionalmente mediante simulaciones

DEM de la descarga de una tolva bidimensional (Bertone et al., 2018, 2023) usando el soft-

ware de simulación LIGGGHTS (Kloss et al., 2012). Durante el transcurso de la simulación

las partículas interactúan entre sí y con los bordes del dominio, modificando sus trayectorias y

velocidades. De este modo se simula la filmación de un sistema dinámico, donde cada imagen

generada corresponde a un cuadro en una secuencia temporal. Cada simulación produce 90 imá-

genes en escala de grises (128 × 128 px), representando la posición de partículas circulares en

diferentes instantes de tiempo, con un intervalo de 0.01 s. En total se generaron 492 secuencias

independientes.

Para cada secuencia, las imágenes se agruparon en secuencias de cuatro cuadros consecu-

tivos. Los dos primeros cuadros se utilizaron como datos de entrada del modelo y los dos si-

guientes se utilizaron como objetivo a predecir. Se construyeron así más de 40.000 ejemplos de

entrenamiento. Se dividió el dataset en conjuntos de entrenamiento (80 %), validación (10 %)

y prueba (10 %), cuidando de que las secuencias completas pertenecieran a un único conjunto

para evitar fuga de información.

2.2. Arquitectura del autoencoder

La arquitectura del modelo, cuyo esquema se muestra en la Figura 1, consiste en un VAE con

un encoder convolucional de cinco bloques, cada uno compuesto por capas Conv2D seguidas
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de Batch Normalization, activación ReLU y MaxPooling, que reduce la resolución de la imagen

hasta obtener un mapa de características de tamaño 8×4 con 512 canales. Esta representación se

aplana en un vector de 16.384 características, a partir del cual se calculan la media y la varianza

logarítmica de un espacio latente de 128 dimensiones. La reparametrización se realiza como:

z = µ+ exp

(

1

2
log σ2

)

ϵ, ϵ ∼ N (0, I)

El decoder invierte el proceso aplicando una capa densa, reshape, y cinco bloques de convo-

luciones transpuestas hasta reconstruir la imagen de salida de 256× 128 px (correspondiente a

los dos cuadros objetivo concatenados).

De este modo, el flujo del modelo involucra la transformación de los cuadros de entrada a una

representación latente comprimida que captura las dinámicas del sistema, y luego reconstruye

los cuadros futuros a partir de esta representación. El proceso de concatenación de las imáge-

nes permite que los modelos procesen secuencias temporales de manera efectiva, facilitando la

predicción de los estados futuros del sistema.

Figura 1: Esquema del autoencoder.

2.3. Entrenamiento de la red y análisis del espacio latente

Para entrenar el modelo se utilizó el optimizador Adam y se estableció una tasa de apren-

dizaje inicial de 10−4 y un tamaño de lote (batch) de 32. La función de pérdida combinó dos

términos: la pérdida de entropía cruzada binaria (BCE), que evalúa la calidad de la reconstruc-

ción de las imágenes, y la divergencia de Kullback-Leibler (KL) ponderada por β = 2,0, que

regulariza el espacio latente para que siga una distribución gaussiana estándar. Durante el entre-

namiento se monitoreó la pérdida de validación para evitar sobreajuste y se guardó el modelo

con el mejor desempeño.

Una vez entrenado el modelo, se extrajeron los vectores de medias zµ correspondientes a

1008 ejemplos del conjunto de prueba. Para visualizar la distribución y estructura de estos

datos en el espacio latente, se aplicó un Análisis de Componentes Principales (PCA) que redujo

la dimensionalidad al subespacio definido por las dos primeras componentes principales.

3. RESULTADOS

3.1. Rendimiento predictivo

Para evaluar la capacidad de predicción del modelo se compararon dos tipos de relaciones:

los cuadros de entrada con los cuadros objetivo que se querían predecir (baseline), y los cuadros

de salida generados por el modelo con los cuadros de salida reales.

Como métrica se utilizó el índice de similitud estructural (SSIM), una medida perceptual que

cuantifica la similitud entre dos imágenes considerando luminancia, contraste y estructura, con

valores en el rango de 0 (sin similitud) a 1 (idénticas).
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El baseline, correspondiente a la comparación entre los cuadros de entrada y los cuadros

objetivo, arrojó un SSIM de 0.72. Por su parte, el SSIM entre los cuadros de salida reales y los

generados por el modelo alcanzó un valor de 0.76 (aproximadamente un 5.5 % superior). Esta

mejora, junto con la reducción del error cuadrático medio (MSE = 0.05), indica que el VAE

predice de manera efectiva la dinámica futura del flujo granular, y no simplemente reproduce

los cuadros de entrada.

La Figura 2 muestra cualitativamente el desempeño predictivo del modelo en un ejemplo del

conjunto de prueba, presentando en paralelo la concatenación de los cuadros de entrada (A),

los cuadros objetivo reales (B) y los cuadros generados por el modelo (C). Se observa que el

modelo reproduce de manera consistente la dinámica esencial del sistema, conservando con

precisión la geometría estática de los bordes de la tolva y la posición de la interfaz granular.

No obstante, en las regiones centrales de mayor flujo —donde la dinámica de partículas es más

compleja y de comportamiento caótico— las predicciones presentan un efecto de suavizado.

Este comportamiento no debe interpretarse únicamente como pérdida de nitidez, sino como una

manifestación del carácter probabilístico del VAE, que refleja la incertidumbre propia de las

colisiones y del movimiento caótico en las zonas de alta actividad

Figura 2: Comparación de las predicciones del modelo VAE. (A) Cuadros de entrada concatenados. (B) Cuadros

de salida concatenados. (C) Predicción generada por el modelo.

3.2. Estructura y evolución temporal del espacio latente

La Figura 3 muestra dos gráficos que permiten apreciar diferentes aspectos del espacio la-

tente.

En el gráfico A se muestra la proyección PCA coloreada según el índice temporal de cada

cuadro dentro de su secuencia correspondiente. Esta visualización permite observar cómo los

estados latentes evolucionan a lo largo del tiempo. Aunque no se aprecia un gradiente cromático

completamente suave, se identifican patrones consistentes: cuadros de color similar (instantes

temporales cercanos) tienden a agruparse, y se pueden intuir trayectorias semi-ordenadas que

reflejan parcialmente la evolución temporal del sistema.

En el gráfico B se observa la misma proyección PCA sin coloración temporal, mostrando

únicamente la estructura del espacio latente. Se observan clusters densos separados por regio-

nes de menor densidad, indicando que el modelo organiza internamente las representaciones

de manera coherente, agrupando configuraciones visuales o estados dinámicos similares (por

ejemplo, tolva llena, flujo en masa, formación de arcos), incluso sin supervisión explícita.
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Estos gráficos permiten visualizar tanto la organización espacial del espacio latente como la

dinámica temporal que se preserva en las representaciones internas del VAE.

Figura 3: Análisis del espacio latente mediante PCA. (A) Proyección de las representaciones latentes coloreada

según el paso de tiempo dentro de la secuencia. (B) Misma proyección, mostrando la estructura general de agru-

pamientos.

4. CONCLUSIONES

Los resultados obtenidos demuestran que el VAE no solo reconstruye adecuadamente los

cuadros futuros, sino que también genera un espacio latente estructurado que permite identi-

ficar regiones asociadas a diferentes configuraciones del sistema. Este resultado representa un

primer paso hacia la identificación de variables de estado interpretables para modelos de orden

reducido, facilitando el desarrollo de representaciones compactas y comprensibles del sistema.

En trabajos futuros, se planea profundizar el análisis del espacio latente correlacionando sus

dimensiones con magnitudes físicas como número de partículas, flujo másico y perfiles de ve-

locidad, así como incorporar regularizadores que promuevan una mayor continuidad temporal

en dicho espacio. Además, se contempla extender este enfoque a simulaciones tridimensionales

y estudiar su integración en esquemas de simulación acelerada.
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