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Resumen. En los dltimos afios los autoencoders variacionales (VAE) se han consolidado como una he-
rramienta poderosa para aprender representaciones compactas y continuas de sistemas complejos. En el
presente trabajo se aplica un VAE convolucional a la tarea de predecir la evolucién temporal en un siste-
ma de flujo granular simulado mediante el método de elementos discretos (DEM). Se entrena el modelo
para recibir como entrada dos imagenes consecutivas de la simulacién y generar como salida las image-
nes de los pasos temporales siguientes. Posteriormente, se analiza el espacio latente resultante utilizando
Andlisis de Componentes Principales (PCA), con el objetivo de evaluar si las representaciones latentes
capturan informacidn relevante sobre el estado del sistema. Los resultados muestran que el modelo es
capaz de organizar los datos en regiones diferenciadas y con continuidad temporal, lo que constituye una
evidencia favorable de que el VAE ha aprendido variables de estado ttiles para describir el sistema.

Keywords: Variational Autoencoder, Dimensionality Reduction, Granular Flows, PCA, Latent Repre-
sentations

Abstract. In recent years, variational autoencoders (VAEs) have established themselves as a powerful
tool for learning compact and continuous representations of complex systems. In this work, a convolutio-
nal VAE is applied to the task of predicting the temporal evolution in a granular flow system simulated by
the discrete element method (DEM). The model is trained to take as input two consecutive images from
the simulation and generate as output the images of the following time steps. Subsequently, the resulting
latent space is analyzed using Principal Component Analysis (PCA), with the aim of evaluating whether
the latent representations capture relevant information about the system’s state. The results show that
the model is capable of organizing the data into differentiated regions with temporal continuity, which
constitutes favorable evidence that the VAE has learned useful state variables to describe the system.
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1. INTRODUCCION

Los flujos de materiales granulares son fendmenos complejos de gran interés en ingenieria
y en aplicaciones industriales, tales como el transporte de sélidos, almacenamiento en silos y
tolvas, y procesos de separacion. La descripcion matemdtica de estos sistemas suele abordar-
se mediante simulaciones de dindmica de particulas, conocidas como Método de Elementos
Discretos (DEM), que resuelven de manera explicita las leyes de Newton para cada particula
(Cundall y Strack, 1979; Zhu et al., 2007, 2008). Si bien este enfoque es riguroso, su costo
computacional puede ser elevado, especialmente cuando se requieren multiples simulaciones
para estudios paramétricos, optimizacion o control.

Una alternativa consiste en construir modelos de orden reducido que describan la dindmica
del sistema en términos de un numero reducido de variables de estado. Tradicionalmente, la
reduccién de dimensionalidad se ha llevado a cabo mediante técnicas como el Andlisis de Com-
ponentes Principales (PCA), que transforma datos de alta dimensionalidad en un subespacio
lineal de menor dimensién (Pearson, 1901; Holmes et al., 2012). De igual forma, la Descompo-
sicién en Valores Singulares (SVD) ofrece un método sistematico para aproximar datos de alta
dimensioén a través de una descomposicion ortogonal conocida como Descomposicién en Mo-
dos Propios (POD) (Berkooz et al., 1993; Taira et al., 2017). Aunque la SVD fue desarrollada
originalmente para sistemas dindmicos basados en observaciones, no estd disefiada para proce-
sar directamente secuencias de imagenes ni para identificar variables de estado sin informacién
adicional, lo que resulta fundamental para comprender la fisica subyacente en fenémenos com-
plejos (Chen et al., 2021). Estas metodologias han sido ampliamente utilizadas para simplificar
conjuntos de datos y facilitar la interpretacion de modelos, aunque su cardcter lineal limita su
efectividad frente a la complejidad propia de flujos granulares. Por estas razones, se ha recu-
rrido a extensiones no lineales del PCA mediante arquitecturas de redes neuronales conocidas
como autoencoders (Baldi y Hornik, 1989; Goodfellow et al., 2016). En este escenario, los
autoencoders se han consolidado como herramientas eficaces para descubrir representaciones
latentes que capturan la esencia dindmica de sistemas complejos. A diferencia de las técnicas
tradicionales lineales como PCA o POD (Pearson, 1901; Holmes et al., 2012), los autoenco-
ders permiten modelar relaciones no lineales y descomponer los sistemas en componentes con
mayor interpretabilidad fisica.

Aunque numerosas técnicas de aprendizaje automatico han demostrado su eficacia para mo-
delar la dindmica de sistemas fisicos, muchas de ellas requieren que las mediciones especificas
de las variables de estado sean conocidas. Por ejemplo, Brunton et al. (Brunton et al., 2016)
emplearon coordenadas espaciales y sus derivadas para modelar el sistema de Lorenz, mientras
que Champion et al. (Champion et al., 2019) utilizaron funciones base predefinidas para guiar
el entrenamiento de un autoencoder en la reconstruccién de observaciones. Adicionalmente,
otros autores han combinado redes neuronales con propiedades fisicas conocidas para resol-
ver ecuaciones partiendo de variables de estado previamente definidas (Udrescu y Tegmark,
2020). Estos enfoques muestran una dependencia significativa de datos explicitos, lo que limita
la aplicabilidad de dichos métodos en escenarios donde tales datos son dificiles de obtener o
directamente no estan disponibles.

Los Autoencoders Variacionales (VAE) constituyen una extension probabilistica de los auto-
encoders clasicos, en la que las variables latentes se modelan como distribuciones, tipicamente
gaussianas, en lugar de puntos deterministicos (Kingma et al., 2014). Esta formulacién permite
no solo la reconstruccion de las entradas, sino también la generacién de nuevas muestras y la
obtencion de espacios latentes continuos y regularizados. En series temporales, los VAEs han
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demostrado ser capaces de aprender representaciones significativas de datos de alta dimension,
que capturan de manera implicita factores como posiciéon, movimiento y dindmica de los ob-
jetos (Gregor et al., 2015; Goroshin et al., 2015). Una de las ventajas principales de los VAEs
es su capacidad de compresion: las imagenes o secuencias de alta resolucidon se proyectan en
espacios latentes de dimensionalidad mucho menor, lo que permite representar el estado del
sistema con un ndmero reducido de variables sin perder informacion relevante (Walker et al.,
2021). Estas representaciones compactas son utiles no s6lo para almacenamiento eficiente, sino
también como base para modelos de orden reducido o para simulaciones aceleradas. La eleccion
de la dimensionalidad del espacio latente constituye un aspecto critico ya que debe balancear
la capacidad de representacion y la interpretabilidad. Métodos recientes permiten estimar la
dimensionalidad intrinseca de los datos a partir de propiedades estadisticas de los vectores la-
tentes, lo que abre nuevas posibilidades de analisis y optimizacion arquitectonica (Bonheme y
Grzes, 2022).

En trabajos previos se explor6 la reduccion de dimensionalidad en sistemas de particulas en
movimiento mediante autoencoders convolucionales, estableciendo una primera aproximacion
a la representacion comprimida de su dindmica (Bertone et al., 2024).

En este trabajo se propone un Autoencoder Variacional para modelar el flujo granular durante
la descarga de una tolva. A diferencia de un autoencoder determinista, el VAE impone una
distribucién probabilistica sobre el espacio latente, favoreciendo la continuidad y regularidad de
la representacion, y permitiendo la generacién de nuevos estados plausibles mediante muestreo.
El objetivo de este trabajo es doble. Por un lado, se busca verificar la capacidad del VAE para
predecir correctamente la evolucion de la dindmica de particulas a corto plazo y, por otro lado,
analizar la estructura de su espacio latente para identificar si contiene informacion interpretable
sobre el estado del sistema.

2. METODOLOGIA
2.1. Generacion de datos

El conjunto de datos empleado fue generado computacionalmente mediante simulaciones
DEM de la descarga de una tolva bidimensional (Bertone et al., 2018, 2023) usando el soft-
ware de simulacion LIGGGHTS (Kloss et al., 2012). Durante el transcurso de la simulacién
las particulas interactian entre si y con los bordes del dominio, modificando sus trayectorias y
velocidades. De este modo se simula la filmacion de un sistema dindmico, donde cada imagen
generada corresponde a un cuadro en una secuencia temporal. Cada simulacién produce 90 imé-
genes en escala de grises (128 x 128 px), representando la posicion de particulas circulares en
diferentes instantes de tiempo, con un intervalo de 0.01 s. En total se generaron 492 secuencias
independientes.

Para cada secuencia, las imdgenes se agruparon en secuencias de cuatro cuadros consecu-
tivos. Los dos primeros cuadros se utilizaron como datos de entrada del modelo y los dos si-
guientes se utilizaron como objetivo a predecir. Se construyeron asi mas de 40.000 ejemplos de
entrenamiento. Se dividio el dataset en conjuntos de entrenamiento (80 %), validacién (10 %)
y prueba (10 %), cuidando de que las secuencias completas pertenecieran a un Uinico conjunto
para evitar fuga de informacion.

2.2. Arquitectura del autoencoder

La arquitectura del modelo, cuyo esquema se muestra en la Figura 1, consiste en un VAE con
un encoder convolucional de cinco bloques, cada uno compuesto por capas Conv2D seguidas
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de Batch Normalization, activacion ReLU y MaxPooling, que reduce la resolucion de la imagen
hasta obtener un mapa de caracteristicas de tamafio 8 X 4 con 512 canales. Esta representacion se
aplana en un vector de 16.384 caracteristicas, a partir del cual se calculan la media y la varianza
logaritmica de un espacio latente de 128 dimensiones. La reparametrizacion se realiza como:

1
z = j+exp (—10g02> e, e~N(0,1)

2

El decoder invierte el proceso aplicando una capa densa, reshape, y cinco bloques de convo-
luciones transpuestas hasta reconstruir la imagen de salida de 256 x 128 px (correspondiente a
los dos cuadros objetivo concatenados).

De este modo, el flujo del modelo involucra la transformacion de los cuadros de entrada a una
representacion latente comprimida que captura las dindmicas del sistema, y luego reconstruye
los cuadros futuros a partir de esta representacion. El proceso de concatenacion de las imége-
nes permite que los modelos procesen secuencias temporales de manera efectiva, facilitando la
prediccion de los estados futuros del sistema.

ti li+2
@ =) encoder =) D =) decoder =)
o
i i espacio

lis1 latente li+s

Figura 1: Esquema del autoencoder.

2.3. Entrenamiento de la red y analisis del espacio latente

Para entrenar el modelo se utilizé el optimizador Adam y se establecié una tasa de apren-
dizaje inicial de 10~ y un tamafio de lote (batch) de 32. La funcién de pérdida combiné dos
términos: la pérdida de entropia cruzada binaria (BCE), que evalua la calidad de la reconstruc-
cioén de las iméagenes, y la divergencia de Kullback-Leibler (KL) ponderada por 5 = 2,0, que
regulariza el espacio latente para que siga una distribucién gaussiana estdndar. Durante el entre-
namiento se monitored la pérdida de validacion para evitar sobreajuste y se guardé el modelo
con el mejor desempefio.

Una vez entrenado el modelo, se extrajeron los vectores de medias z,, correspondientes a
1008 ejemplos del conjunto de prueba. Para visualizar la distribucién y estructura de estos
datos en el espacio latente, se aplicé un Andlisis de Componentes Principales (PCA) que redujo
la dimensionalidad al subespacio definido por las dos primeras componentes principales.

3. RESULTADOS
3.1. Rendimiento predictivo

Para evaluar la capacidad de prediccion del modelo se compararon dos tipos de relaciones:
los cuadros de entrada con los cuadros objetivo que se querian predecir (baseline), y los cuadros
de salida generados por el modelo con los cuadros de salida reales.

Como métrica se utiliz6 el indice de similitud estructural (SSIM), una medida perceptual que
cuantifica la similitud entre dos imagenes considerando luminancia, contraste y estructura, con
valores en el rango de O (sin similitud) a 1 (idénticas).
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El baseline, correspondiente a la comparacion entre los cuadros de entrada y los cuadros
objetivo, arroj6 un SSIM de 0.72. Por su parte, el SSIM entre los cuadros de salida reales y los
generados por el modelo alcanzé un valor de 0.76 (aproximadamente un 5.5 % superior). Esta
mejora, junto con la reduccién del error cuadratico medio (MSE = 0.05), indica que el VAE
predice de manera efectiva la dindmica futura del flujo granular, y no simplemente reproduce
los cuadros de entrada.

La Figura 2 muestra cualitativamente el desempefio predictivo del modelo en un ejemplo del
conjunto de prueba, presentando en paralelo la concatenacién de los cuadros de entrada (A),
los cuadros objetivo reales (B) y los cuadros generados por el modelo (C). Se observa que el
modelo reproduce de manera consistente la dindmica esencial del sistema, conservando con
precision la geometria estdtica de los bordes de la tolva y la posicion de la interfaz granular.
No obstante, en las regiones centrales de mayor flujo —donde la dindmica de particulas es mas
compleja y de comportamiento cadtico— las predicciones presentan un efecto de suavizado.
Este comportamiento no debe interpretarse inicamente como pérdida de nitidez, sino como una
manifestacion del cardcter probabilistico del VAE, que refleja la incertidumbre propia de las
colisiones y del movimiento cadtico en las zonas de alta actividad

Figura 2: Comparacién de las predicciones del modelo VAE. (A) Cuadros de entrada concatenados. (B) Cuadros
de salida concatenados. (C) Prediccién generada por el modelo.

3.2. Estructuray evolucién temporal del espacio latente

La Figura 3 muestra dos graficos que permiten apreciar diferentes aspectos del espacio la-
tente.

En el grifico A se muestra la proyeccion PCA coloreada segun el indice temporal de cada
cuadro dentro de su secuencia correspondiente. Esta visualizacién permite observar como los
estados latentes evolucionan a lo largo del tiempo. Aunque no se aprecia un gradiente cromatico
completamente suave, se identifican patrones consistentes: cuadros de color similar (instantes
temporales cercanos) tienden a agruparse, y se pueden intuir trayectorias semi-ordenadas que
reflejan parcialmente la evolucion temporal del sistema.

En el gréifico B se observa la misma proyeccion PCA sin coloracion temporal, mostrando
unicamente la estructura del espacio latente. Se observan clusters densos separados por regio-
nes de menor densidad, indicando que el modelo organiza internamente las representaciones
de manera coherente, agrupando configuraciones visuales o estados dindmicos similares (por
ejemplo, tolva llena, flujo en masa, formacién de arcos), incluso sin supervision explicita.
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Estos graficos permiten visualizar tanto la organizacion espacial del espacio latente como la
dindmica temporal que se preserva en las representaciones internas del VAE.
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Figura 3: Andlisis del espacio latente mediante PCA. (A) Proyeccién de las representaciones latentes coloreada
segun el paso de tiempo dentro de la secuencia. (B) Misma proyeccién, mostrando la estructura general de agru-
pamientos.

4. CONCLUSIONES

Los resultados obtenidos demuestran que el VAE no solo reconstruye adecuadamente los
cuadros futuros, sino que también genera un espacio latente estructurado que permite identi-
ficar regiones asociadas a diferentes configuraciones del sistema. Este resultado representa un
primer paso hacia la identificacion de variables de estado interpretables para modelos de orden
reducido, facilitando el desarrollo de representaciones compactas y comprensibles del sistema.
En trabajos futuros, se planea profundizar el andlisis del espacio latente correlacionando sus
dimensiones con magnitudes fisicas como niimero de particulas, flujo mésico y perfiles de ve-
locidad, asi como incorporar regularizadores que promuevan una mayor continuidad temporal
en dicho espacio. Ademads, se contempla extender este enfoque a simulaciones tridimensionales
y estudiar su integracion en esquemas de simulacién acelerada.
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