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Resumen. En este trabajo se desarrolla un modelo de asignacion dinamica sobre un dominio
espacialmente continuo que representa aproximadamente el sistema de transporte urbano (medio
poroso equivalente). Se tiene en cuenta la variacion espacial y temporal diurna de la demanda de
viajes. El problema consiste en obtener la distribucion espacial y temporal de los flujos vehiculares en
la ciudad. La formulacién matematica se basa en ecuaciones de conservacion vehicular y en la
definicion de los flujos superficiales en funcion de gradientes de funciones potenciales para definir la
eleccion de ruta por parte de los usuarios (modelo de equilibrio de usuario dindmico reactivo). Tales
ecuaciones se implementan en un esquema computacional que extiende el enfoque Physarum utilizado
para problemas de asignacion estacionaria de trafico. Se presenta la formulacion propuesta, junto con
resultados numéricos que ilustran su eficiencia.

Keywords: congested traffic, dynamic assignment, continuous model, Physarum approach.

Abstract. In this work, a dynamic traffic assignment model is developed over a spatially continuous
domain that approximately represents the urban transportation system (equivalent porous medium).
The diurnal spatial and temporal variation of travel demand is taken into account. The problem
consists of determining the spatial and temporal distribution of vehicular flows in the city. The
mathematical formulation is based on vehicular conservation equations and on the definition of
surface flows as functions of potential gradients, in order to model users’ route choice (reactive user
equilibrium model). These equations are implemented in a computational scheme that extends the
Physarum approach used for static traffic assignment problems. The proposed formulation is
presented, along with numerical results that illustrate its efficiency.
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1 INTRODUCCION

La asignacion de trafico en redes congestionadas es un aspecto clave de la
planificacidon urbana, cuyo propdsito es determinar la distribucion del flujo vehicular y
los tiempos de viaje en un intervalo temporal determinado. Este problema parte del
conocimiento previo de la topologia de la red y de las tasas de generacion de viajes hacia
determinados destinos (centros), que en su version estacionaria se consideran constantes
durante el periodo de analisis. Tradicionalmente, la formulacion se basa en el primer
principio de Wardrop, que postula que los usuarios escogen sus rutas procurando
minimizar individualmente sus costos totales (o tiempos de viaje), lo que conduce a un
problema de optimizacion de gran escala (Boyles et al., 2023). Usualmente, para resolver
el problema de asignacion, la red se modela mediante un conjunto de nodos y arcos
(modelo discreto). Sin embargo, para redes muy grandes, es conveniente sustituir el
entramado de calles por un medio continuo poroso equivalente. Esta aproximacion
continua conduce a una formulacién basada en ecuaciones diferenciales a derivadas
parciales no lineales. Una estrategia eficiente para la solucion del modelo continuo se
logra utilizando el Método de Elementos Finitos (Du et al., 2016; Cortinez y Dominguez,
2017). Sin embargo, las ecuaciones gobernantes del modelo de trafico continuo son
altamente degeneradas (Carlier y Santambrogio, 2012) tendiendo a indeterminarse en
regiones de flujos muy bajos, lo que trae ciertos problemas numéricos. Para solucionar
esta cuestion se ha desarrollado un enfoque de elementos finitos iterativo, denominado
M¢étodo Physarum, que ha mostrado robustez y buenas propiedades de convergencia (Xu
et al., 2018; Cortinez y Dominguez, 2023).

El problema de asignacion descripto previamente resulta independiente del tiempo. Sin
embargo, en contextos urbanos reales, la demanda de trafico suele variar
significativamente en el curso del dia, lo que hace necesario recurrir a modelos dindmicos
que reflejen mejor la evolucién del flujo vehicular. Tal problema se conoce como
asignacion dindmica de trafico (Jiang et al., 2016, 2022). En este caso, las ecuaciones
gobernantes corresponden a las ecuaciones de conservacion vehicular no estacionarias de
la cantidad de vehiculos dirigiéndose hacia diferentes destinos, acopladas a un modelo de
eleccion de ruta basada en la minimizacion del costo de viaje instantaneo (funcidon
potencial) de cada conductor. Este criterio de eleccion de ruta es una extension al caso
dindmico del primer principio de Wardrop. Desde el punto de vista matematico puede
expresarse como una ecuacion tipo Eikonal que relaciona el tiempo de circulacion en la
red con las funciones potenciales de costo hacia cada destino. Este modelo se conoce
como modelo de equilibrio de usuario reactivo (Aghamohammadi y Laval, 2020).

En este trabajo tal modelo se aborda a partir de una extension del enfoque Physarum
previamente utilizado para el problema de asignacidn estacionaria (Cortinez y Dominguez,
2023) y semi dinamica (Cortinez y Dominguez, 2025). Se presenta la formulacion
matematica y un ejemplo numérico para ilustrar el potencial del enfoque.

2 ASIGNACION DINAMICA TRAFICO. FORMULACION CONTINUA

Se considera una red urbana bidimensional con N centros de atraccion (Figura 1), en la
cual se generan viajes hacia cada centro segin una tasa superficial conocida ¢‘(x,y,t)
(veh/km?*h). El problema consiste en obtener la distribucion espacial y temporal de los

vectores de flujo vehiculares hacia cada centro de destino d, f?(veh/h/km). Se asume
conocida la infraestructura de la red urbana que viene codificada en una funcion de tiempo de
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viaje unitario ¢ (h/km) (1/velocidad media) que se define empiricamente. Tal funcion puede
depender de la densidad de vehiculos, o también de una medida del flujo vehicular, en un
punto dado. En este trabajo se utiliza la segunda forma, que si bien es algo mas restringida,
puede representar con suficiente precision los efectos de la asignacion dinamica (excepto
fendémenos de sobrecongestion, embotellamientos, etc.). Una expresion usual es la siguiente:

d=1

Nd 7
c(x,y)=a+b[2‘fd‘j , a,b,y>0 (D)

donde a, b y y contemplan la geometria de calles y dependen de x e y (Du et al., 2016). Debe
observarse que se trata de una funcion creciente con los flujos vehiculares, reflejando asi el
efecto de la congestion. Los flujos vehiculares, dirigiéndose hacia cada destino d, deben
verificar ecuaciones de conservacion:

op!
9 == (2)
siendo p?(x,y,t)la densidad superficial (veh/km?) de los vehiculos hacia el destino d. Por
definicion, la magnitud del flujo vehicular se relaciona con la densidad de la siguiente manera:

\fd\ =o'V (3)

donde la velocidad V' es la inversa del tiempo de viaje por unidad de longitud c.
Consecuentemente, es posible escribir:

p! =] (4)

El sistema anterior se debe completar con el criterio de eleccion de ruta por parte de los
usuarios. En problemas de asignacion estacionaria, se asume que los conductores eligen el

camino que minimiza su tiempo total de recorrido u?(x, y) desde un punto determinado hasta
el destino correspondiente. Para ello, la estrategia de ruta puede ser expresada en la forma (Du
et al., 2016):
fd
= —uwd (5)
c

Debe observarse que de esta tltima expresion se deduce que la funcion potencial u¢ verifica la
ecuacion de la Eikonal:

c= ‘Vud‘ (6)

Esta ecuacion expresa el hecho de que el mddulo del gradiente de la funcidn potencial es el
mismo para cualquier destino. Uno de los criterios seguidos para la asignacion de rutas en el
caso de asignacion dinamica es suponer la validez de la ecuacion (5), aunque contemplando el
hecho de que ¢ y 1 dependen del tiempo. En este caso, el significado de la funcion u“ es el de
tiempo de recorrido total “instantaneo” que corresponde al tiempo que insumiria el recorrido
desde un punto dado hacia el destino si se mantuvieran las condiciones de congestion de ese
momento. La interpretacion de tal criterio, seria que cada conductor elige el camino que
minimiza su tiempo de viaje total instantdneo y se denomina “equilibrio dindmico de usuario
reactivo”. Su grado de aproximacion a la realidad es adecuado en el caso de que los
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conductores reciban informacion del trafico en tiempo real a través de radios, teléfonos
moviles y/o servicios de navegacion inteligentes.

De acuerdo a lo anterior, el problema de asignacion dindmica se formula mediante las
ecuaciones (1), (2), (4) y (5), conjuntamente con las siguientes condiciones de borde e
iniciales:

£ -nr‘r =0, d=1,2,..,N,, (7Ta-c)

P (x,,0)= pil (x, ).

donde n_ el versor normal al perimetro urbano I", (7a) se verifica por definicion (el tiempo de

viaje en el destino es nulo), (7b) indica que no hay viajes entrando o saliendo de la ciudad y
(7¢) expresa que la densidad inicial se conoce.

3 ESQUEMA DE SOLUCION ITERATIVO. METODO PHYSARUM

Para la solucion numérica del sistema de ecuaciones presentado, el tiempo total bajo
analisis 7 se divide en subintervalos pequefios Af. En cada uno de ellos, las ecuaciones del
problema dinamico se resuelven en forma iterativa hasta convergencia. Entonces, se pasa al
calculo del periodo siguiente, tomandose como aproximaciones iniciales los valores que se
acaban de calcular en el subperiodo corriente (de manera similar al algoritmo seguido por
Cortinez y Dominguez, 2025, para asignacion semidinamica).

A continuacion se muestra el correspondiente esquema de calculo.

a) Para el tiempo ¢ se conocen: la tasa superficial de generacion de viajes g“(x,y,t) y la

densidad correspondiente al periodo anterior p“(x, y,t —At).

b) En la primera iteracion para el tiempo #, se toma una aproximacién para f¢ —f<.

Luego se adopta R :‘fd‘ y se aproxima c¢ mediante la ecuacion (1):

Nd — .\
T= a+b(z ‘f d‘) , entonces, la expresion (5) puede ser aproximada como
d-1
f'=—k‘Vir’, donde k* =R? /7. A su vez, la densidad en el tiempo actual puede
aproximarse a partir de (4) como p? = r‘fd‘ .

¢) Se resuelven los N sistemas de ecuaciones diferenciales lineales mediante el método de
elementos finitos:

v-(k'Vir')+g* =0,

—d (8a-c)
ﬁd\d _0, x| o,
on -
donde
—d d ﬁd(X,y,f)_Pd(xa)’at_Af)
q (xayat):q (xayat)_ At (9)

Observar que la ecuacion (8a) se obtiene introduciendo la aproximacion a la ecuacion
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®)) en la ecuacion (2), aproximando por diferencias finitas:

apd (xy t) Hﬁd(x’yat)_pd(x’y’t_At)
o 7 At

indicada anteriormente. Se procede en forma similar con las condiciones de borde (8c¢).

y utilizando la aproximacion de la densidad

d) Una vez determinadas las funciones potenciales aproximadas #“, se obtiene una nueva
aproximacion para los flujos:

£ =—k'Vi* (10)

e) Con f“se obtienen nuevas aproximaciones para R¢, los tiempos de viaje por unidad de
longitud 7, las conductividades k“y las densidades p“ de la siguiente manera:

. (_‘fd‘Jer

R ,
2
fd
o c(;‘z UH’ (11a-0)
k=R,

,5”’<—(r\fd\+4pd)/5.

Observar que en estas actualizaciones para RY, 7 y k? no se emplean en forma directa
las formulas utilizadas para las aproximaciones iniciales sino que se utilizan expresiones
promediadas entre las aproximaciones previas y las calculadas en el paso actual. En la
actualizacion de la densidad (10d) se asigna mayor peso al valor de la iteracion previa.
Estas actualizaciones mejoran la convergencia.

f) finalmente, con los valores actualizados (10-11) se vuelve al paso c) y se itera hasta
convergencia.
g) Se repiten los calculos para el proximo periodo + At .

4 EJEMPLOS NUMERICOS

Para ejemplificar la metodologia descripta, se presenta una ciudad de aproximadamente
790 km? tal como la de la Figura 1a). Se estudia el comportamiento de la red en un periodo de
4 horas correspondientes a las primeras horas de la mafiana. Se considera que durante la hora
pico, las demandas (méximas) hacia los centros Ci y C> son ¢' =80 y ¢° = 60 veh/h/km?
respectivamente. Estas tasas varian temporalmente durante el periodo de estudio de la
siguiente manera (Figura 1c): a) en la primera hora la demanda crece desde el 10% de la
demanda maxima hasta alcanzar los valores maximos, b) durante la segunda hora se mantiene
constante en el méaximo, c¢) en la tercera hora la demanda decrece hasta llegar al 20% de la
demanda méxima y d) en la cuarta hora se mantiene constante en el 20%. Se adoptan los
siguientes valores para la funcion de costo hacia ambos destinos (2): a=1/60, b=0.21x10° y
y =1.2 (Figura 1b). Se asume que en el instante inicial las densidades son nulas.
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Figura 1: a) Esquema de la red de transporte urbano, b) funcion del tiempo unitario de viaje c y c) tasa de

generacion de viajes q1 y (]2 hacia los destinos 1 y 2, respectivamente.

El intervalo de tiempo de 4 horas que se estudia se subdivide en pasos Af=0.1h. Las
iteraciones del método Physarum se fijan en 8 para cada paso de tiempo. En las Figuras 2a) y
2b) se puede apreciar la convergencia del tiempo de viaje u' desde los punto Py, P, y Pshacia
el destino Ci en funcion de las iteraciones, para los instantes de tiempo =0.7 h y =2.8 h,
respectivamente. Como se puede apreciar, con cambios importantes de demanda, la
convergencia se alcanza en 6 o 7 iteraciones, mientras que practicamente son suficientes 2
iteraciones cuando los cambios en la demanda son pequefios.
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Figura 2: Convergencia de u' en los puntos P; a P; en los instantes, a) =0.7 y b) u' en +=2.8h.

Asimismo, en la Figura 3a) se muestra la convergencia del proceso iterativo en el tiempo
t=0.2h en términos de las densidades p' y p”en los puntos Pi, P>y P3 y en la Figura 3b) se

puede observar la convergencia para las Glltimas 2 iteraciones en =1.5 h de las densidades p'

y p’sobre la linea S.
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Figura 3: Convergencia de la densidad: a) p” en los puntos P a P; en el instante 7=0.2 h, b) p'y p*sobre el

segmento S para =3 h (rol, ro2=p', p* ultima iteracién, rrol, rro2 = p', p*, ante Gltima iteracidn)

A modo de ejemplo, en las Figuras 4a-c) se muestran resultados de la convergencia de los
tiempos de viaje u' y u” en las dos iteraciones finales del intervalo, los vectores de flujo

hacia ambos destinos y la densidad superficial hacia el destino Ci, todos para =1.5 h.

Tiempo de viaje (h)
N

a0, )

Densidad

Figura 4: Resultados en /=1.5 h, a) convergencia del tiempo de viajeu' yu® en dos iteraciones sucesivas (ul_a,

u2_a, corresponden a la antetltima iteracion), b) flujos hacia ambos destinos y c) densidad p'.

En la Figura 5a) se muestra la evolucion temporal de los tiempos de viaje #' y u” hacia los
centros Ciy (>, desde los puntos Pi a P3. En la Figura 5b) se muestra un grafico similar para

las densidades p' y p° en los mismos puntos.
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Figura 5: Evolucién temporal, a)de u'y u” desde Pi, P,y Ps, b) de las densidades p', p*> en los mismos

puntos.

CONCLUSIONES

En este trabajo se ha presentado un modelo iterativo evolutivo en el tiempo basado en el
enfoque Physarum para resolver el problema continuo bidimensional de asignacion dindmica
de trafico urbano segun el criterio reactivo de eleccion de ruta. Los resultados de los ejemplos
son auspiciosos mostrando buenas propiedades de convergencia. Actualmente se esta
investigando la eficiencia de la metodologia en comparacion con otras que se han propuesto
en la literatura. Asimismo, se esta trabajando en la extension de la presente metodologia a
situaciones de sobrecongestion. Un aspecto interesante del enfoque propuesto es la posibilidad
de paralelizar el algoritmo para analizar grandes redes.
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