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Resumen. En este trabajo se desarrolla un modelo de asignación dinámica sobre un dominio 
espacialmente continuo que representa aproximadamente el sistema de transporte urbano (medio 
poroso equivalente). Se tiene en cuenta la variación espacial y temporal diurna de la demanda de 
viajes. El problema consiste en obtener la distribución espacial y temporal de los flujos vehiculares en 
la ciudad. La formulación matemática se basa en ecuaciones de conservación vehicular y en la 
definición de los flujos superficiales en función de gradientes de funciones potenciales para definir la 
elección de ruta por parte de los usuarios (modelo de equilibrio de usuario dinámico reactivo). Tales 
ecuaciones se implementan en un esquema computacional que extiende el enfoque Physarum utilizado 
para problemas de asignación estacionaria de tráfico. Se presenta la formulación propuesta, junto con 
resultados numéricos que ilustran su eficiencia. 
 
Keywords: congested traffic, dynamic assignment, continuous model, Physarum approach. 

Abstract. In this work, a dynamic traffic assignment model is developed over a spatially continuous 
domain that approximately represents the urban transportation system (equivalent porous medium). 
The diurnal spatial and temporal variation of travel demand is taken into account. The problem 
consists of determining the spatial and temporal distribution of vehicular flows in the city. The 
mathematical formulation is based on vehicular conservation equations and on the definition of 
surface flows as functions of potential gradients, in order to model users’ route choice (reactive user 
equilibrium model). These equations are implemented in a computational scheme that extends the 
Physarum approach used for static traffic assignment problems. The proposed formulation is 
presented, along with numerical results that illustrate its efficiency. 

Mecánica Computacional Vol XLII, pp. 919-927
A. Caggiano, G. Etse, P. Folino, M. Goldschmit, M. Pucheta, M. Storti (Eds.)

S. Giusti, J.M. Podestá (Issue eds.)
Buenos Aires, November 11-14, 2025

Copyright © 2025 Asociación Argentina de Mecánica Computacional
ISSN: 2591-3522 DOI: 10.70567/mc.v42.ocsid8510

https://creativecommons.org/licenses/by/4.0
http://www.amcaonline.org.ar
https://doi.org/10.70567/mc.v42.ocsid8510


 

 
1 INTRODUCCIÓN   

La asignación de tráfico en redes congestionadas es un aspecto clave de la 
planificación urbana, cuyo propósito es determinar la distribución del flujo vehicular y 
los tiempos de viaje en un intervalo temporal determinado. Este problema parte del 
conocimiento previo de la topología de la red y de las tasas de generación de viajes hacia 
determinados destinos (centros), que en su versión estacionaria se consideran constantes 
durante el período de análisis. Tradicionalmente, la formulación se basa en el primer 
principio de Wardrop, que postula que los usuarios escogen sus rutas procurando 
minimizar individualmente sus costos totales (o tiempos de viaje), lo que conduce a un 
problema de optimización de gran escala (Boyles et al., 2023).  Usualmente, para resolver 
el problema de asignación, la red se modela mediante un conjunto de nodos y arcos 
(modelo discreto). Sin embargo, para redes muy grandes, es conveniente sustituir el 
entramado de calles por un medio continuo poroso equivalente. Esta aproximación 
continua conduce a una formulación basada en ecuaciones diferenciales a derivadas 
parciales no lineales. Una estrategia eficiente para la solución del modelo continuo se 
logra utilizando el Método de Elementos Finitos (Du et al., 2016; Cortínez y Dominguez, 
2017). Sin embargo, las ecuaciones gobernantes del modelo de tráfico continuo son 
altamente degeneradas (Carlier y Santambrogio, 2012) tendiendo a indeterminarse en 
regiones de flujos muy bajos, lo que trae ciertos problemas numéricos. Para solucionar 
esta cuestión se ha desarrollado un enfoque de elementos finitos iterativo, denominado 
Método Physarum, que ha mostrado robustez y buenas propiedades de convergencia (Xu 
et al., 2018; Cortínez y Dominguez, 2023).  

El problema de asignación descripto previamente resulta independiente del tiempo. Sin 
embargo, en contextos urbanos reales, la demanda de tráfico suele variar 
significativamente en el curso del día, lo que hace necesario recurrir a modelos dinámicos 
que reflejen mejor la evolución del flujo vehicular. Tal problema se conoce como 
asignación dinámica de tráfico (Jiang et al., 2016, 2022). En este caso, las ecuaciones 
gobernantes corresponden a las ecuaciones de conservación vehicular no estacionarias de 
la cantidad de vehículos dirigiéndose hacia diferentes destinos, acopladas a un modelo de 
elección de ruta basada en la minimización del costo de viaje instantáneo (función  
potencial) de cada conductor. Este criterio de elección de ruta es una extensión al caso 
dinámico del primer principio de Wardrop. Desde el punto de vista matemático puede 
expresarse como una ecuación tipo Eikonal que relaciona el tiempo de circulación en la 
red con las funciones potenciales de costo hacia cada destino. Este modelo se conoce 
como modelo de equilibrio de usuario reactivo (Aghamohammadi y Laval, 2020). 

En este trabajo tal modelo se aborda a partir de una extensión del enfoque Physarum 
previamente utilizado para el problema de asignación estacionaria (Cortínez y Dominguez, 
2023) y semi dinámica (Cortínez y Dominguez, 2025). Se presenta la formulación 
matemática y un ejemplo numérico para ilustrar el potencial del enfoque.    

2 ASIGNACIÓN DINÁMICA TRÁFICO. FORMULACIÓN CONTINUA 
Se considera una red urbana bidimensional con Nd centros de atracción (Figura 1), en la 

cual se generan viajes hacia cada centro según una tasa superficial conocida ( , , )dq x y t  
(veh/km2/h). El problema consiste en obtener la distribución espacial y temporal de los 
vectores de flujo vehiculares hacia cada centro de destino d, df (veh/h/km). Se asume 
conocida la infraestructura de la red urbana que viene codificada en una función de tiempo de 
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viaje unitario c (h/km) (1/velocidad media) que se define empíricamente. Tal función puede 
depender de la densidad de vehículos, o también de una medida del flujo vehicular, en un 
punto dado. En este trabajo se utiliza la segunda forma, que si bien es algo más restringida, 
puede representar con suficiente precisión los efectos de la asignación dinámica (excepto 
fenómenos de sobrecongestión, embotellamientos, etc.). Una expresión usual es la siguiente: 

 
1

( , ) , , , 0
Nd

d

d

c x y a b a b





 
   

 
 f  (1) 

donde a, b y  contemplan la geometría de calles y dependen de x e y (Du et al., 2016).  Debe 
observarse que se trata de una función creciente con los flujos vehiculares, reflejando así el 
efecto de la congestión. Los flujos vehiculares, dirigiéndose hacia cada destino d, deben 
verificar ecuaciones de conservación: 

 
d

d dq
t


  


f  (2) 

siendo ( , , )d x y t la densidad superficial (veh/km2) de los vehículos hacia el destino d. Por 
definición, la magnitud del flujo vehicular se relaciona con la densidad de la siguiente manera: 

 d dVf  (3) 

donde la velocidad V es la inversa del tiempo de viaje por unidad de longitud c. 
Consecuentemente, es posible escribir: 

 d dc  f  (4) 

El sistema anterior se debe completar con el criterio de elección de ruta por parte de los 
usuarios. En problemas de asignación estacionaria, se asume que los conductores eligen el 
camino que minimiza su tiempo total de recorrido ( , )du x y desde un punto determinado hasta 
el destino correspondiente. Para ello, la estrategia de ruta puede ser expresada en la forma (Du 
et al., 2016): 

 
d

d du
c

  
f

f  (5) 

Debe observarse que de esta última expresión se deduce que la función potencial du verifica la 
ecuación de la Eikonal: 

 dc u   (6) 

Esta ecuación expresa el hecho de que el módulo del gradiente de la función potencial es el 
mismo para cualquier destino. Uno de los criterios seguidos para la asignación de rutas en el 
caso de asignación dinámica es suponer la validez de la ecuación (5), aunque contemplando el 
hecho de que c y du dependen del tiempo. En este caso, el significado de la función du es el de 
tiempo de recorrido total “instantáneo” que corresponde al tiempo que insumiría el recorrido 
desde un punto dado hacia el destino si se mantuvieran las condiciones de congestión de ese 
momento. La interpretación de tal criterio, sería que cada conductor elige el camino que 
minimiza su tiempo de viaje total instantáneo y se denomina “equilibrio dinámico de usuario 
reactivo”. Su grado de aproximación a la realidad es adecuado en el caso de que los 
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conductores reciban información del tráfico en tiempo real a través de radios, teléfonos 
móviles y/o servicios de navegación inteligentes. 

De acuerdo a lo anterior, el problema de asignación dinámica se formula mediante las 
ecuaciones (1), (2), (4) y (5), conjuntamente con las siguientes condiciones de borde e 
iniciales: 

 

0

0,

0, 1,2,..., ,

( , ,0) ( , ).

d
d

d
d

d d

u

d N

x y x y 

 



  



f n  (7a-c) 

donde n el versor normal al perímetro urbano  , (7a) se verifica por definición (el tiempo de 
viaje en el destino es nulo), (7b) indica que no hay viajes entrando o saliendo de la ciudad  y 
(7c) expresa que la densidad inicial se conoce.  

3 ESQUEMA DE SOLUCIÓN ITERATIVO. MÉTODO PHYSARUM 
Para la solución numérica del sistema de ecuaciones presentado, el tiempo total bajo 

análisis T se divide en subintervalos pequeños t . En cada uno de ellos, las ecuaciones del 
problema dinámico se resuelven en forma iterativa hasta convergencia. Entonces, se pasa al 
cálculo del período siguiente, tomándose como aproximaciones iniciales los valores que se 
acaban de calcular en el subperíodo corriente (de manera similar al algoritmo seguido por 
Cortínez y Dominguez, 2025, para asignación semidinámica).  

A continuación se muestra el correspondiente esquema de cálculo. 
a) Para el tiempo t se conocen: la tasa superficial de generación de viajes ( , , )dq x y t  y la 

densidad correspondiente al período anterior ( , , )d x y t t  . 
b) En la primera iteración para el tiempo t, se toma una aproximación para d df f . 

Luego se adopta d dR  f  y se aproxima c mediante la ecuación (1): 

 
1

Nd d

d
a b






   f , entonces, la expresión (5) puede ser aproximada como 
d d dk u  f , donde /d dk R  . A su vez, la densidad en el tiempo actual puede 

aproximarse a partir de (4) como d d  f . 
c) Se resuelven los Nd sistemas de ecuaciones diferenciales lineales mediante el método de 

elementos finitos: 
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d
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   


  



 (8a-c) 

donde 

 ( , , ) ( , , )( , , ) ( , , )   
d d

d d x y t x y t tq x y t q x y t
t

  
 


 (9) 

Observar que la ecuación (8a) se obtiene introduciendo la aproximación a la ecuación  
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(5) en la ecuación (2), aproximando por diferencias finitas:  
( , , ) ( , , )( , , )   

d d dx y t x y t tx y t
t t
    


 

y utilizando la aproximación de la densidad 

indicada anteriormente. Se procede en forma similar con las condiciones de borde (8c).  

d) Una vez determinadas las funciones potenciales aproximadas du , se obtiene una nueva 
aproximación para los flujos: 

 d d dk u  f  (10) 

e) Con df se obtienen nuevas aproximaciones para Rd, los tiempos de viaje por unidad de 
longitud  , las conductividades dk y  las densidades d  de la siguiente manera: 
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 (11a-d) 

Observar que en estas actualizaciones para Rd,   y dk  no se emplean en forma directa 
las fórmulas utilizadas para las aproximaciones iniciales sino que se utilizan expresiones 
promediadas entre las aproximaciones previas y las calculadas en el paso actual. En la 
actualización de la densidad (10d) se asigna mayor peso al valor de la iteración previa. 
Estas actualizaciones mejoran la convergencia.   

f) finalmente, con los valores actualizados (10-11) se vuelve al paso c) y se itera hasta 
convergencia. 

g) Se repiten los cálculos para el próximo período t+ t .  

4 EJEMPLOS NUMÉRICOS 
Para ejemplificar la metodología descripta, se presenta una ciudad de aproximadamente 

790 km2 tal como la de la Figura 1a). Se estudia el comportamiento de la red en un período de 
4 horas correspondientes a las primeras horas de la mañana. Se considera que durante la hora 
pico, las demandas (máximas) hacia los centros C1 y C2 son 1 80q  y 2 60q  veh/h/km2 
respectivamente. Estas tasas varían temporalmente durante el período de estudio de la 
siguiente manera (Figura 1c): a) en la primera hora la demanda crece desde el 10% de la 
demanda máxima hasta alcanzar los valores máximos, b) durante la segunda hora se mantiene 
constante en el máximo, c) en la tercera hora la demanda decrece hasta llegar al 20% de la 
demanda máxima y d) en la cuarta hora se mantiene constante en el 20%. Se adoptan los 
siguientes valores para la función de costo hacia ambos destinos (2): a=1/60, b=0.21x10-5 y 

1.2   (Figura 1b). Se asume que en el instante inicial las densidades son nulas. 
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Figura 1: a) Esquema de la red de transporte urbano, b) función del tiempo unitario de viaje c y c) tasa de 

generación de viajes 1q  y  2q  hacia los destinos 1 y 2, respectivamente. 

El intervalo de tiempo de 4 horas que se estudia se subdivide en pasos 0.1ht  . Las 
iteraciones del método Physarum se fijan en 8 para cada paso de tiempo. En las Figuras 2a) y 
2b) se puede apreciar la convergencia del tiempo de viaje 1u  desde los punto P1, P2 y  P3 hacia 
el destino C1 en función de las iteraciones, para los instantes de tiempo t=0.7 h y t=2.8 h, 
respectivamente. Como se puede apreciar, con cambios importantes de demanda, la 
convergencia se alcanza en 6 o 7 iteraciones, mientras que prácticamente son suficientes 2 
iteraciones cuando los cambios en la demanda son pequeños.  

 

 
Figura 2: Convergencia de 1u en los puntos P1 a P3 en los instantes, a) t=0.7 y b) 1u en t=2.8h. 

Asimismo, en la Figura 3a) se muestra la convergencia del proceso iterativo en el tiempo 
t=0.2h en términos de las densidades 1  y 2 en los puntos P1, P2 y  P3  y en la Figura 3b) se 
puede observar la convergencia para las últimas 2 iteraciones en  t=1.5 h de las densidades 1  
y 2 sobre la línea S.  
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Figura 3: Convergencia de la densidad: a) 2 en los puntos P1 a P3 en el instante t=0.2 h,  b) 1 y 2 sobre el 

segmento S para t=3 h (ro1, ro2= 1 , 2  última iteración, rro1, rro2 = 1 , 2 , ante última iteración) 

A modo de ejemplo, en las Figuras 4a-c) se muestran resultados de la convergencia de los 
tiempos de viaje 1u  y 2u  en las dos iteraciones finales del intervalo, los vectores de flujo 
hacia ambos destinos y la densidad superficial hacia el destino C1, todos para  t=1.5 h. 

 

 

Figura 4: Resultados en t=1.5 h, a) convergencia del tiempo de viaje 1u y 2u  en dos iteraciones sucesivas (u1_a, 
u2_a, corresponden a la anteúltima iteración), b) flujos hacia ambos destinos y c) densidad 1 .  

En la Figura 5a) se muestra la evolución temporal de los tiempos de viaje 1u  y 2u  hacia los 
centros C1 y C2, desde los puntos P1 a P3. En la Figura 5b) se muestra un gráfico similar para 
las densidades 1  y 2  en los mismos puntos.   
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Figura 5: Evolución temporal,  a) de 1u y 2u  desde P1,  P2 y P3 ,  b) de las densidades 1 , 2  en los mismos 
puntos.  

CONCLUSIONES  
En este trabajo se ha presentado un modelo iterativo evolutivo en el tiempo basado en el 

enfoque Physarum para resolver el problema continuo bidimensional de asignación dinámica 
de tráfico urbano según el criterio reactivo de elección de ruta. Los resultados de los ejemplos 
son auspiciosos mostrando buenas propiedades de convergencia. Actualmente se está 
investigando la eficiencia de la metodología en comparación con otras que se han propuesto 
en la literatura. Asimismo, se está trabajando en la extensión de la presente metodología a 
situaciones de sobrecongestión. Un aspecto interesante del enfoque propuesto es la posibilidad 
de paralelizar el algoritmo para analizar grandes redes.  
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