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Resumen. La asignación de tráfico congestionado tiene como objetivo determinar la distribución del 
tránsito y los tiempos de viaje en una red urbana. En condiciones estacionarias, el problema se modela 
siguiendo el principio de Wardrop, según el cual cada usuario elige su ruta minimizando su propio 
tiempo de viaje, lo que conduce a un problema de optimización de gran escala. En los últimos años, se 
ha propuesto un enfoque iterativo denominado modelo Physarum, que ha demostrado ser eficiente 
para la resolución de este tipo de problemas. En este trabajo, dicho modelo se extiende para abordar la 
asignación dinámica de tráfico, incorporando la variación temporal de la demanda y de las 
características del flujo vehicular. Se presenta la formulación propuesta, junto con resultados 
numéricos que ilustran su eficiencia. 
 
Keywords: congested traffic, dynamic assignment, Physarum model. 

Abstract. Congested traffic assignment aims to determine how traffic is distributed and what the 
travel times are within an urban network. Under stationary conditions, the problem is modeled 
following Wardrop’s principle, whereby each user seeks to minimize their own travel time, leading to 
a large-scale optimization problem. Recently, an iterative approach known as the Physarum model has 
been proposed and shown to be effective in solving such problems. In this work, the model is 
extended to address dynamic traffic assignment, which accounts for variations in demand and traffic 
characteristics over time. The formulation is presented along with numerical results that illustrate its 
efficiency. 
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1 INTRODUCCIÓN   

La asignación de tráfico congestionado es un problema fundamental en la planificación 
urbana. Consiste en determinar la distribución del tráfico en las arterias de la ciudad y los 
tiempos de viaje de los usuarios en un período del día determinado. Para ello, en la 
versión estacionaria del problema, se considera conocida tanto la estructura de la red 
como las tasas horarias de generación de viajes asumiendo que éstas permanecen 
constantes dentro del período analizado. La solución de este problema de equilibrio sigue 
el primer principio de Wardrop, el cual establece que cada usuario elige su ruta 
minimizando su propio tiempo de viaje (Boyles et al., 2023). Típicamente, esto conduce a 
un problema de optimización en gran escala. Recientemente, se ha desarrollado un 
método efectivo para analizar este problema mediante un enfoque iterativo denominado 
modelo Physarum (Xu et al., 2018; Dominguez et al., 2023).  

Por otra parte, considerando, que en entornos urbanos complejos, la demanda de 
tráfico, y consecuentemente el flujo de vehículos, puede variar significativamente a lo 
largo del día e incluso durante un mismo viaje, se han desarrollo modelos de asignación 
dinámica (Boyce et al., 1999; Wang et al., 2018).  El problema de asignación dinámico 
tiene un alto costo computacional comparado con el estático. Por tal motivo, algunos 
autores han propuesto modelos intermedios denominados enfoques de asignación semi-
dinámica. En éstos, el período de análisis se divide en varios subintervalos de tiempo 
dentro de los cuales se asume que la red alcanza un estado de equilibrio. Además, se tiene 
en cuenta la propagación de los flujos residuales, es decir, aquellos viajes que se inician 
en un subintervalo y concluyen en el siguiente (Nakayama et al., 2012; Koike et al., 2022). 
El enfoque de solución se reduce a una sucesión de problemas de asignación estática, 
aunque intercambiando información entre un subperíodo con el siguiente. Recientemente, 
los autores (Dominguez y Cortínez, 2025) han propuesto la aplicación del método 
Physarum al problema de asignación semi dinámica.  

Si bien el enfoque semi dinámico resulta simple desde el punto de vista 
computacional, presenta algunas limitaciones, por ejemplo, la duración de cada período 
debe ser lo sufientemente larga, tal que la mayor parte de la demanda de viajes alcance su 
destino en el mismo período de partida (Nakayama et al., 2012), lo que no siempre es 
factible en grandes distancias urbanas. En tales casos, es inevitable abordar el problema 
de asignación dinámica completa. 

En este trabajo, el modelo Physarum se generaliza para la solución del problema de 
asignación dinámica. En el artículo, se presenta la formulación estática de tráfico urbano 
basada en un sistema de ecuaciones algebraico no lineal, así como el esquema de solución 
iterativa basada en el método Physarum. A continuación se muestra la generalización del 
modelo para el caso de asignación dinámica y, entonces, se presenta la adaptación del 
enfoque Physarum a esta situación dinámica. También se presentan algunos ejemplos 
numéricos simples para ilustrar la metodología    

2 ASIGNACIÓN ESTÁTICA DE TRÁFICO 

2.1 Formulación multidestino 
Se considera una red urbana de tráfico donde los usuarios viajan desde determinados 

puntos (orígenes de viajes) de la ciudad hacia ciertos puntos de destino d (d=1, 2,…, Nd). Se 
conoce la topología de la red, asumida por un conjunto de arcos dirigidos a (a=1,2,…, Na) 
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conectados por nodos j (j=1,2,…, Nn) y las características de cada arco (capacidad, longitud, 
velocidad máxima permitida). El sentido de circulación obligatorio en cada arco se define 
mediante ij   que es igual a 1 si el sentido de circulación es de i hacia j y -1 si va en sentido 
contrario (Figura 1c). Asimismo, se conoce la tasa horaria de generación de viajes d

jQ  (veh/h) 
en cada nodo j de la red hacia los diferentes destinos d.  El problema de asignación de viajes 
consiste en obtener los flujos horarios d

ag  (veh/h) en cada arco a hacia cada destino d, de 
acuerdo a la selección de ruta de los usuarios y los tiempos de viaje d

jU (h) desde cada nodo j 
al correspondiente destino d. Se asume tráfico en condiciones de equilibrio. Una formulación 
habitual para este problema conduce a un problema de optimización en gran escala, conocido 
como problema de Beckman (Boyles et al., 2023).  

 

 
 

Figura 1: a) Esquema de la red, b) conservación vehicular en el nodo, c) arco entre nodos, d) área asociada al 
nodo j y e) función de tiempo de viaje BPR. 

Aquí se presenta una formulación alternativa basada en un sistema de ecuaciones 
algebraico no lineal, que evita algunas de las limitaciones que presenta la formulación de 
Beckman (Cortínez y Dominguez, 2017; Dominguez et al., 2023). Tal enfoque, se plantea de 
la siguiente manera: 
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donde aH  es la función de costo, generalmente el tiempo de recorrido de arco, que es una 
función creciente empírica del flujo total en cada arco aG , como muestra la expresión (1), 
reflejando el efecto de congestión vehicular (Figura 1e).  

La ecuación (2) corresponde a la conservación vehicular en cada nodo, siendo Rj el 
conjunto de arcos adyacentes al nodo j (Figura 1b). La expresión (3) indica que el flujo se 
dirige en el sentido decreciente del tiempo de viaje y la (4) indica que, por definición, el 
tiempo de viaje en el destino final es nulo. Debe observarse que la ecuación (3) implica que 

d d
i j aU U H  , que es una de las maneras de postular el primer principio de Wardrop 

(Dominguez et al., 2023). 
El sistema (2-4) constituye el sistema gobernante algebraico no lineal con Nd(Nn+Na) 

incógnitas: d
ag  y d

jU . Una vez resuelto se pueden obtener aH  y aG  a partir de (1). Esta 
formulación es similar a la del modelo de complementariedad de Ferris et al. (Ferris et al. 
1999; Bagloee et al., 2017).    

2.2 Esquema de solución iterativa: Método Physarum 
Una forma conveniente de resolver el sistema anterior es a partir de su reformulación como 

un problema de valor inicial (algoritmo Physarum) (Xu et al., 2018; Dominguez et al., 2023):  
 
   0,d d d d

a i j j
i Pj

M U U Q


    (5) 

 0,d
dU   (6) 

 
   ,d d d d
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 
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 
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 *(0) ,   [0,+ ),  1, 2,...  ,    1, 2,... .d d

a aM M s a Na d Nd      (9) 
 

donde Pj corresponde al número de nodos adyacentes al nodo j. ( )d
jU s  y ( )d

ag s  son 
aproximaciones a las incógnitas del problema original. ( )d

aM s  representa la conductividad 
hacia d en el arco a y evoluciona de acuerdo a la ecuación diferencial (8).  

La solución asintótica (s → +∞) del sistema (5-9) corresponde al problema de equilibrio de 

usuario (ecuaciones 1-4). En efecto, cuando s→ +∞,  0
d
adM

ds
 , lo que en virtud de (8) 

implica que /d d d d d
a a a a a a

d

M g H g 
  
       

   y entonces, desde (5-7) surge la verificación de 

las ecuaciones (1-3). 
 Luego,  ( )d

jU s  y  ( )d
ag s  tienden a d

jU  y d
ag  cuando  s→ +∞. Desde el punto de vista 
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práctico, las ecuaciones (8) se aproximan mediante diferencias finitas (Dominguez et al., 
2023), lo que conduce a un esquema iterativo de solución. La convergencia de esta 
metodología es rápida, cualesquiera sean los valores iniciales *d

aM . 

3 ASIGNACIÓN DINÁMICA DE TRÁFICO 

3.1 Formulación multidestino general de asignación dinámica 
A continuación se generaliza la formulación multidestino (1-4) a la situación dinámica, es 

decir, ahora las tasas horarias de generación de viajes en cada nodo resultan dependientes del 
tiempo ( )d d

j jQ Q t . De esta manera, tanto los flujos d
ag  como los tiempos de viaje d

jU  
también lo son. En el caso dinámico, la ecuación de conservación vehicular en cada nodo (2) 
se modifica para permitir la posibilidad de acumulación temporal de vehículos d

jn en el 
espacio asociado a cada nodo j:   

 

  
dd
jd d da

i j j
i P d dj

a a a
d

dng U U Q
dt

H g 

  
 
  
 




 (10) 

En este modelo se asume, de manera simplificada, que el número de vehículos hacia un 
desino d en cada arco d

an , está unifomemente distribuido en el mismo. 
Consecuentemente, el número de vehículos asociado a nodo j corresponde a la mitad de 
las suma de vehículos existente en los arcos aledaños. Es decir, el área de influencia de 
cada nodo j se extiende hasta las mitades de las longitudes de los arcos aledaños (Figura 
1d). En consecuencia, se puede expresar  

 
 / 2  d d

j a
a Ra

n n


  (11) 

 
Por definición, el flujo es igual al producto entre la densidad vehicular y la velocidad 

( /d
a an L ), y la velocidad /a a av L H , que en este trabajo, se asume uniforme en el tramo 

para cada tiempo t. Por lo tanto, se puede expresar: 
 
  d d

a a an g H  (12) 
 
A partir de (11) y (12) se puede expresar el número de vehículos en cada nodo en 

términos de los flujos asociados a los arcos concurrentes: 
 
 / 2  d d

j a a
a Ra

n g H


  (13) 

Por lo tanto, el modelo dinámico queda formulado con las ecuaciones (1), (10), (13), 
(3) y (4). Además debe tenerse en cuenta la condición inicial correspondiente al número 
de vehículos en cada arco hacia cada destino (0)d

an  (o equivalentemente d
ag  (0)). 

Debe observarse que en la formulación presentada se admite la validez de la ecuación  
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 (1) para el tiempo de recorrido de arco como una función creciente de igual manera que 
en el problema de asignación estática. Esto restringe el fenómeno a regímenes no 
sobrecongestionados (efecto de embotellamiento). Para considerar los mismos, debería 
adoptarse una función de tiempo de arco dependiente de la densidad vehicular.  

La verificación de la ecuación (3) implica que la igualdad d d
i j aU U H   se verifica 

instantáneamente, lo que equivale a decir que los usuarios eligen las rutas que minimizan 
su tiempo de viaje. Tal criterio de elección de ruta se denomina estrategia de elección de 
ruta reactiva. Es razonable asumir tal criterio cuando los conductores cuentan con 
información en tiempo real (GPS, aplicaciones de navegación, etc.) 

3.2 Esquema iterativo de solución: Enfoque Physarum 
Para adaptar la estrategia de solución expuesta en la sección 2.2 se divide el período de 

tiempo considerado en subintervalos pequeños t . En cada uno de los mismos las ecuaciones 
del problema dinámico se resuelven con el esquema Physarum hasta convergencia. Entonces, 
se pasa al cálculo del período siguiente  tomándose como aproximaciones iniciales las que se 
acaban de calcular en el subperíodo corriente. A continuación se muestra el correspondiente 
esquema de cálculo.  

a) Para el tiempo t se conocen *( )d
aM t t , ( )d

jn t t  y ( )d
jQ t t . 

b) Se resuelven los Nd sistemas algebraicos lineales: 
 
   0,d d d d

a i j j
i Pj

M U U Q


    (14) 

Esta ecuación corresponde a una aproximación en diferencias finitas temporales de la 
expresión (10).  

c) Una vez obtenidos d
jU se obtiene una nueva aproximación para los flujos: 

 
  ( ) ,d d d d

a a i jg t M U U   (15) 
d) Empleando diferencias finitas implícitas para la ecuación (8), se obtiene una nueva 

aproximación para ( )d
aM t  y, de la misma manera, usando (12) una nueva aproximación 

de ( )d
an t : 

 1( )
2

d d
d da a
a a

d d
a a a

d

gM t M
H g





 
 
 

       
  


 (16) 

 
 

  1( ) + 
2

d d d
a a a an t g H n  (17) 

 
e) con los nuevos valores de d

an  se calculan el número de vehículos asignado al nodo j 
y la nueva tasa de generación efectiva:  
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 ( ) / 2  d d
j a

a Ra

n t n


  (18) 

 

 
( ) ( )

( ) ( )   
d d
j jd d

j j

n t n t t
Q t Q t

t
 

 


 (19) 

 
f) con los valores de ( )d

aM t  y ( )d
jQ t calculados en la última iteración se vuelve al 

paso b) y se itera hasta convergencia y se repiten los cálculos para el próximo subperíodo 
t+ t .  

4 EJEMPLOS NUMÉRICOS 
Se aplica el modelo descripto a una pequeña red compuesta por 12 nodos, que pueden ser 

simultáneamente orígenes y destinos de viajes, y 50 arcos (entre cada par de nodos existen 2 
arcos, ij y ji) cuyas longitudes aL  (en km) se muestran, entre paréntesis, en la Figura 1a). Se 
estudia el comportamiento de la red en un período de 4 horas correspondientes a las primeras 
horas de la mañana. 

 

 Nodos destino de viajes 
1 2 3 4 5 6 7 8 9 10 11 12 

N
od

os
 o

rí
ge

ne
s d

e v
ia

je
s 

1 0 10 100 230 245 100 105 15 80 20 220 155 
2 195 0 145 235 95 70 95 175 125 175 165 190 
3 170 175 0 120 10 140 150 230 85 110 25 250 
4 50 170 90 0 40 230 65 20 35 65 210 130 
5 5 180 30 95 0 25 150 90 245 125 170 220 
6 95 120 175 145 15 0 155 235 60 40 40 30 
7 110 110 195 25 180 40 0 245 195 10 120 240 
8 130 180 100 135 55 25 115 0 120 10 175 115 
9 215 220 125 155 175 150 5 195 0 35 230 60 
10 20 205 205 195 200 200 230 175 50 0 165 130 
11 135 200 225 185 80 115 165 140 165 240 0 140 
12 40 185 145 225 40 125 250 120 140 190 110 0 

Tabla 1: Matriz origen-destino de viajes en hora de máxima demanda 

En la Tabla 1 se muestran las tasas de generación de viajes d
jQ  (veh/h) de referencia 

(máximas), entre nodos orígenes y destinos. Estas tasas varían temporalmente durante el 
período de estudio de la siguiente manera: a) en la primera hora la demanda crece desde el 
10% de la demanda máxima hasta alcanzar los valores máximos, b) durante la segunda hora 
se mantiene constante en el máximo, c) en la tercera hora la demanda decrece hasta llegar al 
20% de la demanda máxima y d) en la cuarta hora se mantiene constante en el 20%. Como 
función de costo en los arcos de la red se adopta la función de tiempo de viaje BPR (Boyles et 
al., 2023),  4/ 1 0.15( / )a a a a at l v g C   donde, las capacidades Ca de todos los arcos se fijan 

en 800 veh/h y la velocidad de circulación a flujo libre va en 60 km/h.  
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El intervalo de tiempo de 4 horas que se estudia se subdivide en pasos 0.05t h  . Las 
iteraciones del método Physarum se fijan en 10 para cada paso de tiempo. En las Figuras 2a), 
2b) y 2c) se muestra la convergencia del número de vehículos en determinados nodos hacia 
diferentes destinos en función de tales iteraciones para los instantes de tiempo t=0.5 h, t=2 h y 
t=2.5 h, respectivamente. Como se puede apreciar la convergencia se alcanza prácticamente en 
3 ó 4 iteraciones. El tiempo de cálculo para la simulación de 4 horas, es de 5 segundos 
aproximadamente. 

 

 
Figura 2: Convergencia del número de vehículos d

jn en el tiempo a) t=0.5h, b) t =1.5h y c) t=2.5h 

En la Figura 3a) se puede observar la evolución temporal de la cantidad de vehículos 
asociados al nodo 4, que se dirigen hacia diferentes destinos, 4 ( )dn t  y en la Figura 3b) la 
variación temporal del número total de vehículos ( ) d

j j
d

n t n  para los nodos 3, 4, 7 y 8.  

 

Figura 3: Evolución de la cantidad de autos, a) en el nodo 4 hacia diferentes destinos y b) totales en nodos. 

De igual manera, en la Figura 4a) se muestra la evolución de los flujos vehiculares (veh/h) 
en los arcos i-j indicados dirigiéndose hacia el nodo 11 como destino. En la Figura 4b) se 
muestra el flujo total ( ) d

a a
d

G t g  en determinados arcos i-j. 
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Figura 4: Evolución de los flujos, a) en los arcos i-j hacia el destino 11 y  b) totales en los arcos i-j. 

CONCLUSIONES  
En este trabajo se ha presentado un modelo iterativo evolutivo en el tiempo basado en el 

enfoque Physarum para resolver el problema de asignación dinámica de tráfico urbano basado 
en el criterio reactivo de elección de ruta. Los resultados de los ejemplos son auspiciosos 
mostrando buenas propiedades de convergencia. Actualmente se está investigando la 
eficiencia de la metodología en comparación con otras que se han propuesto en la literatura. 
Asimismo, se está trabajando en la extensión de la presente metodología a situaciones de 
sobrecongestión. Un aspecto interesante del enfoque propuesto es la posibilidad de paralelizar 
el algoritmo para analizar grandes redes.  
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