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Resumen. La predicción precisa del consumo de agua potable constituye un desafío clave para las 
distribuidoras, especialmente en contextos donde la medición manual continúa siendo el método 
predominante. En muchas regiones de Argentina, las cooperativas aún dependen de estos registros, lo 
que introduce errores en la facturación, dificulta la planificación operativa y genera conflictos con los 
usuarios. Este trabajo aborda dicha problemática mediante la evaluación y comparación de tres 
metodologías de pronóstico: un método estadístico clásico (Medias Móviles), un modelo de aprendizaje 
automático de conjunto (Bosque Aleatorio o Random Forest) y un procedimiento de series temporales 
especializado (Prophet). Los resultados demuestran que los modelos basados en aprendizaje automático, 
como Bosque Aleatorio, reducen de manera significativa los errores de predicción respecto a los 
métodos tradicionales. Se concluye que la adopción de estas herramientas aporta información valiosa 
para optimizar la toma de decisiones estratégicas en la gestión cooperativa del agua. 

Keywords: Machine Learning, Time series, Water distribution systems, Random Forest, Prophet 

Abstract. Accurate prediction of drinking water consumption is a key challenge for utility providers, 
especially in contexts where manual metering remains the predominant method. In many regions of 
Argentina, cooperatives still rely on these records, which leads to billing errors, hinders operational 
planning, and creates conflicts with users. This work addresses this issue by evaluating and comparing 
three forecasting methodologies: a classic statistical method (Moving Averages), an ensemble machine 
learning model (Random Forest), and a specialized time-series procedure (Prophet). The results show 
that machine learning-based models, such as Random Forest, significantly reduce prediction errors 
compared to traditional methods. It is concluded that the adoption of these tools provides valuable 
insights to optimize strategic decision-making in cooperative water management.
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INTRODUCCIÓN 

La facturación precisa del consumo de agua potable es un pilar fundamental en la relación 

entre las cooperativas distribuidoras y sus usuarios. Sin embargo, en gran parte de Argentina, 

la dependencia de lecturas manuales de medidores introduce una fuente de error recurrente. 

Estas imprecisiones no solo derivan en errores de facturación y los consecuentes reclamos por 

parte de los usuarios, sino que también limitan la capacidad de la organización para una 

planificación operativa eficiente. 

Para mitigar estos problemas, la adopción de modelos predictivos que estimen el consumo 

esperado de cada usuario se presenta como una solución estratégica. Al comparar una 

predicción fiable con la lectura manual registrada, es posible identificar anomalías, detectar 

posibles errores de lectura antes de emitir la factura y, en definitiva, minimizar los conflictos. 

Los enfoques estadísticos clásicos, como las medias móviles, son útiles para identificar 

tendencias simples, pero demuestran ser insuficientes frente a dinámicas de consumo no 

lineales o al no poder incorporar variables externas influyentes (ej. temperatura, 

estacionalidad). En este contexto, las técnicas de Aprendizaje Automático (Machine Learning, 

ML) y los modelos especializados en series temporales surgen como alternativas con un 

potencial significativamente mayor. 

El presente trabajo tiene como objetivo principal evaluar y comparar el desempeño de tres 

enfoques distintos para el pronóstico del consumo mensual a nivel de usuario domiciliario: (i) 

un método estadístico tradicional de Medias Móviles, (MA); (ii) un modelo de aprendizaje de 

conjunto, Bosque Aleatorio (Random Forest, RF); y (iii) un modelo especializado en series 

temporales, Prophet, (PH). El análisis busca determinar la viabilidad de estos modelos como 

herramientas para la validación de lecturas y la reducción proactiva de errores de facturación, 

utilizando para ello un conjunto de datos reales de una cooperativa de servicios públicos del 

centro de Argentina. 

1 MARCO TEÓRICO Y ANTECEDENTES 

La predicción de la demanda de agua es un área de investigación consolidada y de vital 

importancia para la gestión eficiente de los recursos hídricos. La literatura académica ha 

abordado este problema desde múltiples perspectivas, evolucionando desde modelos 

estadísticos clásicos hacia técnicas avanzadas de aprendizaje automático. A pesar de la extensa 

investigación en la predicción de la demanda de agua a nivel de sistema o ciudad, se identifican 

en este trabajo dos aportes principales. El primero, relacionado con la escala de análisis: la 

mayoría de los estudios se centran en la demanda agregada de una red o un sector, y no en la 

predicción a escala de usuario domiciliario individual, que es fundamental para la gestión de la 

facturación y minimización de reclamos. El segundo aspecto es el contexto de aplicación 

operativo específico de las cooperativas de servicios públicos, donde la lectura manual de 

medidores sigue siendo una práctica extendida y una fuente importante de errores y conflictos. 

Los enfoques Box–Jenkins, del tipo Modelo Autorregresivo Integrado de Media Móvil (o 

modelos ARIMA por sus siglas en inglés) y sus extensiones han sido la base histórica para 

demanda de agua por su capacidad de capturar autocorrelación y componentes estocásticos bajo 

supuestos de linealidad y cuasi estacionariedad (Box et al, 2015). Cuando la estacionalidad es 

fuerte y el patrón es relativamente estable, los modelos SARIMA (Seasonal ARIMA o ARIMA 

estacional), suelen rendir bien, aunque su desempeño se degrada frente a no linealidades, 

cambios de régimen y choques exógenos no modelados explícitamente. La construcción de 

modelos y el diagnóstico (identificación, estimación y validación) siguen las guías consolidadas 

en la literatura clásica de series temporales. Dentro de esta categoría se encuentran también 

métodos más sencillos como el suavizado exponencial y las MA. Si bien estos modelos son 

fáciles de implementar e interpretar, su principal limitación es que asumen que los patrones del 
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pasado continuarán en el futuro de manera lineal, y tienen dificultades para incorporar variables 

externas (exógenas) que influyen en el consumo, como las condiciones climáticas. Son 

considerados, en la literatura reciente, como un punto de referencia (baseline) para evaluar el 

rendimiento de modelos más complejos. 

Con el aumento de la capacidad computacional y la disponibilidad de datos, los modelos de 

ML han ganado un enorme protagonismo. A diferencia de los modelos clásicos, estas técnicas 

son capaces de capturar relaciones no lineales complejas entre múltiples variables. Las Redes 

Neuronales Artificiales (ANN) y Máquinas de Vectores de Soporte (SVM) han demostrado ser 

eficaces para predecir la demanda de agua a corto y mediano plazo, especialmente al incluir 

variables como la temperatura, la precipitación y el día de la semana (Ghiassi et al., 2008). 

Los modelos basados en árboles de decisión, como RF y Gradient Boosting (GB), son 

particularmente valorados por su habilidad para modelar relaciones no lineales e integrar 

covariables (p. ej., temperatura, precipitaciones, feriados, indicadores socioeconómicos). La 

literatura destaca que RF es robusto frente al sobreajuste y puede manejar un gran número de 

variables de entrada, identificando automáticamente las más relevantes. Su aplicación en la 

predicción de consumo ha mostrado resultados superiores a los métodos estadísticos en 

contextos con alta variabilidad (Brentan et al., 2017). El consenso general en la investigación 

es que los modelos de ML superan a los tradicionales en precisión, siempre que se disponga de 

datos de calidad y de variables explicativas relevantes. Revisiones recientes del área reportan 

ventajas de ML frente a ARIMA cuando hay no linealidades marcadas y múltiples variables 

exógenas, especialmente en horizontes cortos y medios (Ghannam & Hussain, 2024). 

En los últimos años han surgido modelos específicamente diseñados para facilitar el 

pronóstico de series temporales, los cuales buscan combinar la robustez estadística con la 

flexibilidad de ML. Uno de los ejemplos paradigmáticos es PH (Taylor y Letham, 2018), 

desarrollado por Facebook, que se ha consolidado como una herramienta ampliamente utilizada 

en distintos campos de aplicación. Este modelo está concebido para trabajar con series que 

presentan fuertes componentes estacionales (por ejemplo, anuales, mensuales o semanales), 

mostrando además una notable robustez frente a datos faltantes y frente a cambios abruptos de 

tendencia. La literatura lo describe como un recurso potente y accesible, ya que automatiza gran 

parte de los pasos complejos del modelado de series temporales sin exigir una formación 

estadística avanzada por parte del usuario. 

PH se basa en un marco aditivo y descomponible, que divide la serie en tres componentes 

principales: tendencia, estacionalidad y efectos de calendario (como feriados o eventos locales). 

Este enfoque permite que los resultados sean interpretables y que el modelo pueda ajustarse con 

relativa facilidad, incluso en contextos donde existen puntos de cambio (changepoints) en la 

dinámica de la serie. PH ha sido ampliamente adoptado en diferentes contextos de predicción 

de demanda. En el sector energético, su combinación con redes neuronales de memoria a corto 

y largo Plazo, ha permitido mejorar significativamente las métricas predictivas, (Albahli, 2025). 

En contextos industriales y de salud, PH fue parte esencial en modelos de planificación 

avanzada y demanda farmacéutica sensible al clima (Nadal et al, 2025; Schisa & Farnè, 2025) 

Aunque no fue diseñado de manera específica para el dominio hídrico, su arquitectura 

modular lo hace particularmente útil en este campo, ya que admite la incorporación de variables 

exógenas relevantes. Asimismo, su desempeño predictivo competitivo, junto con la 

transparencia en la interpretación de sus resultados, ha llevado a que se emplee con frecuencia 

como punto de referencia metodológico (benchmark) frente a otros modelos más complejos. 

La literatura revisada revela que, si bien la predicción de la demanda agregada es un tema 

ampliamente cubierto, la aplicación de estos modelos a escala de usuario individual y para el 

contexto operativo de las cooperativas representa un área de especial interés y menor 

exploración. El presente estudio se concentra en este dominio específico, aplicando y 
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comparando un modelo clásico, uno de aprendizaje automático y uno especializado como 

herramienta para la gestión de la facturación.  

2 MATERIALES Y MÉTODOS 

Esta sección detalla el conjunto de datos utilizado, los modelos de pronóstico implementados 

y la estrategia de evaluación empleada para comparar su desempeño en la predicción del 

consumo de agua domiciliario. 

2.1 Descripción del conjunto de datos  

Para la realización de este trabajo se cuenta con registros históricos de consumo mensual de 

los usuarios de una cooperativa en la región sur de la provincia de Córdoba, Argentina 

abarcando el período que va desde febrero de 2019 hasta agosto de 2025. Se organiza la 

información en un conjunto de datos almacenado en un archivo de valores separados por comas 

(comma separated values, csv) en cinco columnas cuya descripción se muestra en la tabla 1. 

 

# Nombre Descripción Tipo 

1 Usuario Identif del usuario Entero 

2 Año Año de la lectura Entero 

3 Mes Mes de la lectura Entero 

4 Consumo Consumo [m3] Entero 

5 Temperatura Temperatura [°C] Real 

Tabla 1: Descripción del conjunto de datos. 

Usuario se refiere a la identificación de cada usuario dentro de la cooperativa. La fecha del 

período considerado queda determinada por el mes y el año de la lectura. El consumo es 

calculado como simple diferencia entre lecturas y expresado en metros cúbicos. La última 

columna corresponde a la temperatura promedio para cada período medido y es una variable 

exógena para el modelo que se expresa en °C. 

2.2 Preprocesamiento de los datos  

Previo al análisis, en necesario llevar a cabo un proceso de transformación de los datos, cuyo 

objetivo es depurar y estandarizar los registros disponibles en la base. Esta etapa permite 

convertir la información en bruto en un conjunto de datos limpio, coherente y estructurado, 

garantizando su idoneidad para el modelado y el análisis posterior. Se ordenan 

cronológicamente para asegurar la correcta estructura de la serie temporal, se realiza una 

verificación del tipo de datos y se calcula algunas estadísticas básicas para cada columna 

numérica que permita detectar rápidamente valores atípicos o absurdos tales como valores 

negativos de consumo, valor de mes fuera de rango, temperaturas fuera de los valores aceptados 

en la región. Posteriormente se debe proceder al tratamiento de datos faltantes: en este trabajo 

no se permite faltantes de temperatura, ya que se han obtenido a partir de una fuente 

meteorológica externa, y en el caso de consumos se imputa el faltante por interpolación entre 

los valores anterior y posterior al dato faltante. Finalmente se quitan algunos datos atípicos 

identificados como claros errores de lecturas o registro. Para detectarlos se utilizan dos 

métodos: en el caso de procesamiento de un usuario individual se utiliza un método visual, 

graficando el consumo a lo largo del tiempo y observando los picos anómalos. Para procesar 

un grupo de usuarios se utiliza el rango intercuartílico (IQR) que considera un valor atípico si 

está por encima de Q3+1.5 IQR o por debajo de Q1-1.5 IQR. Los valores atípicos se reemplazan 
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por los valores máximos o mínimos “creíbles”. Se considera válido el consumo mínimo en 0 y 

se reemplaza un valor atípico por exceso por el percentil 99 del usuario. 

2.3 Modelos implementados 

Medias Móviles. Se implementó MA como línea de base para representar un enfoque 

estadístico simple y que es normalmente utilizado como método para estimar consumos en las 

cooperativas que deriva de una práctica común en el caso de lectura de medidores de energía 

eléctrica de usuarios rurales en los cuales es común reemplazar el consumo para un período 

dado, tomando el promedio de los últimos 3 o 6 meses. En este trabajo se utiliza varias 

configuraciones de ventana (3, 6 y 12 meses), donde la predicción para el mes siguiente 

corresponde al promedio del consumo en la configuración de ventana adoptada. 

Bosque Aleatorio. Se utiliza un modelo de RF de la librería scikit-learn, representativo de 

los enfoques de aprendizaje automático. El modelo es entrenado utilizando como variables 

predictoras (features) el año, el mes y la temperatura, con el consumo como variable objetivo 

(target). Se emplea una partición cronológica, reservando los últimos 12 meses de datos como 

conjunto de prueba (test set). Se configura el modelo con 200 estimadores. 

Prophet. Finalmente, se implementa PH, un modelo especializado en series temporales 

desarrollado por Facebook. El modelo se ajustó para un usuario individual, configurado para 

capturar la estacionalidad anual (yearly_seasonality=True) y la tendencia subyacente de la serie 

de consumo. Se genera un pronóstico a un mes de horizonte. 

2.4 Estrategia de Evaluación y Métricas de Error 

Para evaluar y comparar cuantitativamente la precisión de los modelos, se calculan dos 

métricas de error estándar sobre el conjunto de prueba (los últimos 12 meses). En primer lugar, 

se usa el Error Absoluto Medio (MAE) que mide el promedio de los errores absolutos entre los 

valores reales y los predichos puesto que es fácil de interpretar, ya que se expresa en las mismas 

unidades que la variable (en este caso, metros cúbicos). También se utiliza la Raíz del Error 

Cuadrático Medio (RMSE) que permite penalizar en mayor medida los errores grandes al 

elevarlos al cuadrado antes de promediarlos. También se expresa en las mismas unidades que 

la variable. 

3 EXPERIMENTOS Y RESULTADOS 

En esta sección se presentan los resultados obtenidos al aplicar la metodología descrita sobre 

el conjunto de datos de prueba. El objetivo es evaluar y comparar el desempeño de los tres 

modelos de pronóstico, de manera objetiva. 

Se ha tomado, como ejemplo los datos en el período descrito para un usuario y se exponen 

los resultados cuantitativos a través de las métricas de error MAE y RMSE para establecer una 

comparación directa de la precisión predictiva. A continuación, se realiza un análisis visual 

mediante gráficos que ilustran el comportamiento de cada modelo frente a los datos reales de 

consumo.  

 

3.1 Desempeño Predictivo y Métricas de Error 

Para evaluar y comparar de manera objetiva la precisión de los modelos, se calculan las 

métricas  MAE y RMSE sobre el conjunto de datos de prueba. Estos valores cuantifican el error 

promedio de predicción, donde valores más bajos indican un mejor desempeño. 

La Tabla 2 resume los resultados de este análisis para cinco configuraciones de modelos: 

tres variantes del método de MA (con ventanas de 3, 6 y 12 meses, respectivamente), el modelo 
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RF y PH. 

 

Modelo MAE RMSE 

MA (ventana=3) 1.34 1.93 

MA (ventana=6) 1.50 2.02 

MA (ventana=12) 1.29 1.76 

RF 0.60 0.83 

PH 1.08 1.43 

Tabla 2: Comparación de las métricas para las 3 metodologías. 

De acuerdo con los resultados obtenidos, se observa que el modelo RF se destaca como el 

de mayor precisión, obteniendo los valores más bajos en ambas métricas de error. Registró un 

MAE de 0.60 y un RMSE de 0.83, indicando que sus predicciones tuvieron, en promedio, la 

menor desviación respecto a los valores reales y fue el más efectivo en minimizar errores de 

gran magnitud. 

El siguiente modelo con mejor desempeño fue PH, con un MAE de 1.08 y un RMSE de 1.43. 

Si bien demostró ser una alternativa robusta, sus errores fueron notablemente superiores a los 

de RF. 

Dentro de las variantes de MA, el modelo con una ventana de 12 meses (MAE = 1.29, RMSE 

= 1.76) resultó ser el más preciso de los tres, superando a las configuraciones con ventanas de 

3 y 6 meses. No obstante, todos los modelos de MA presentaron errores significativamente más 

altos que los obtenidos por los dos modelos más avanzados. 

3.2 Análisis visual de las predicciones 

Para complementar la evaluación cuantitativa, esta sección presenta un análisis visual del 

comportamiento de los modelos. Los gráficos permiten observar de manera intuitiva cómo cada 

método de pronóstico se ajusta a la serie temporal real, facilitando la identificación de patrones 

como el seguimiento de la tendencia, la captura de la estacionalidad y la presencia de retardos 

en la predicción. A continuación, se muestran los resultados para MA, RF y PH. 

La Figura 1 presenta la serie temporal del consumo real de agua superpuesta con las 

predicciones generadas por los tres modelos de MA  con ventanas de 3, 6 y 12 meses. Se puede 

observar que las predicciones de los modelos de MA son versiones suavizadas de la serie 

original. Ninguno de los modelos logra capturar completamente los picos y valles (la 

estacionalidad) del consumo real, sino que tienden a aplanar estas fluctuaciones. 
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Figura 1: Comparación de Predicciones de MA vs. Consumo Real. 

Se aprecian las siguientes diferencias clave entre las tres ventanas: 

MA(3): La línea de predicción con ventana de 3 meses es la que sigue más de cerca las 

variaciones del consumo real, aunque presenta un ligero retardo. Es la más reactiva a los 

cambios a corto plazo. 

MA(6): Aumentar la ventana a 6 meses produce una línea de predicción más suave que la 

anterior, mostrando un mayor aplanamiento de los picos y un retardo más pronunciado. 

MA(12): La predicción con una ventana de 12 meses es la más plana y estable de las tres.    

Si bien es la que peor captura la volatilidad mensual, es la que mejor representa la tendencia a 

largo plazo de la serie, confirmando los resultados de la Tabla 2, donde este modelo obtuvo el 

menor error. 

En conjunto, el gráfico ilustra la característica fundamental de las medias móviles: su 

incapacidad para predecir picos estacionales y su tendencia a reaccionar con retraso a los 

cambios en los datos. 

La Figura 2 muestra la comparación entre los valores de consumo real y las predicciones 

generadas por el modelo de RF en el conjunto de prueba. A diferencia del comportamiento 

suavizado de las MA, se observa que la predicción del RF se ajusta de manera mucho más 

precisa a la serie de datos reales. El modelo es capaz de capturar las fluctuaciones mensuales, 

incluyendo los picos y valles estacionales, con una fidelidad considerablemente mayor.  
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Figura 2: Comparación de la Predicción de RF vs. Consumo Real. 

Los puntos clave que revela el gráfico son, por una parte, una alta capacidad de ajuste: la 

línea de predicción sigue muy de cerca a la línea de consumo real, lo que demuestra la habilidad 

del modelo para aprender las relaciones complejas y no lineales entre las variables de entrada 

(año, mes, temperatura) y el consumo. Por otra parte, no se aprecia el retardo característico de 

las medias móviles. El modelo predice los puntos altos y bajos del consumo en el momento en 

que ocurren, lo que es crucial para una validación precisa de las lecturas. 

En resumen, el análisis visual confirma los resultados cuantitativos de la Tabla 2, mostrando 

que RF ofrece un modelo predictivo robusto y reactivo para la serie de consumo de agua 

analizada. 

 

Figura 3: Comparación de la Predicción de PH vs. Consumo Real. 

La Figura 3 ilustra los resultados del modelo PH, mostrando la serie de consumo real junto 

con la predicción del modelo. Visualmente, la predicción de PH se caracteriza por una curva 
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suave y cíclica que modela los patrones subyacentes de la serie temporal, en lugar de seguir las 

fluctuaciones de alta frecuencia.  

El primer aspecto destacable en la utilización de esta estrategia es la capacidad de capturar 

la estacionalidad. El modelo identifica y reproduce con claridad el patrón estacional anual del 

consumo. La curva de predicción sube y baja en sintonía con los picos y valles estacionales de 

los datos reales, demostrando su capacidad para modelar ciclos a largo plazo. También puede 

observarse que la predicción sigue la tendencia general de la serie, ya sea esta creciente, 

decreciente o estable a lo largo del tiempo. 

En conclusión, el gráfico muestra que PH es efectivo para modelar la estructura fundamental 

de la serie temporal (tendencia + estacionalidad), aunque no se ajusta a cada punto individual 

con la misma precisión que el RF, proporciona un pronóstico robusto y estructuralmente 

coherente. 

4 CONCLUSIONES 

Se evaluaron y compararon tres metodologías de pronóstico (MA, RF y PH) con el fin 

práctico de desarrollar una herramienta para validar lecturas manuales de medidores de agua y 

reducir los errores de facturación en el contexto de cooperativas de servicios públicos 

argentinas. Los resultados demuestran que los modelos de aprendizaje automático ofrecen una 

ventaja significativa sobre los métodos estadísticos tradicionales para esta tarea. El modelo de 

RF se destacó como la alternativa más precisa, obteniendo los valores más bajos en el error 

absoluto medio y en el error cuadrático medio,  mostrando en el análisis visual una capacidad 

superior para capturar las fluctuaciones del consumo real sin el retardo inherente a otros 

métodos. Por su parte, PH también se mostró como un modelo robusto, especialmente eficaz 

para modelar la estructura estacional del consumo, aunque con una precisión puntual 

ligeramente inferior a la de RF. En contraste, los modelos de Medias Móviles, si bien son 

simples de implementar, resultaron insuficientes para la tarea de validación precisa debido a su 

incapacidad para modelar la estacionalidad y su retardo en la respuesta. 

La principal implicancia de estos resultados es de naturaleza práctica y operativa. Un modelo 

como RF puede ser implementado como una herramienta de validación automática. Al 

comparar la lectura manual de un medidor con la predicción del modelo para ese usuario y 

período, el sistema puede generar alertas cuando la discrepancia supere un umbral predefinido. 

Esto permitiría a la cooperativa detectar errores de lectura o posibles fugas de agua de manera 

proactiva, mejorando la precisión del sistema de facturación y reduciendo significativamente 

los conflictos con los usuarios. 

Es importante reconocer las limitaciones de este estudio para contextualizar los resultados. 

El análisis se ha centrado en datos de una única cooperativa y en un usuario como caso testigo 

para la visualización, por lo que la generalización de los resultados requiere estudios adicionales 

en contextos más amplios. Asimismo, no se ha realizado una optimización exhaustiva de los 

hiperparámetros de los modelos. 

Como líneas de trabajo futuro, se propone la validación de esta metodología en un conjunto 

de datos que abarque un mayor número de usuarios y diversas cooperativas. Además, se podría 

explorar la incorporación de variables exógenas adicionales (como precipitaciones o eventos 

locales) y el desarrollo de un prototipo de software que integre el modelo predictivo 

directamente en el sistema de gestión comercial de la cooperativa, pasando de un estudio de 

viabilidad a una herramienta operativa funcional. 
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