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Resumen. Este trabajo presenta un breve taller para la enseñanza de métodos numéricos en la Facul-

tad de Ingeniería de la Universidad de la República (UdelaR) que integra redes neuronales profundas y,

en particular, PINNs como complemento de los enfoques tradicionales. La propuesta combina módulos

semanales con clases y notebooks interactivos, guiando desde una red neuronal básica hasta aplicacio-

nes de PINNs a problemas gobernados por ecuaciones diferenciales. Los casos abarcan: ecuación de un

sistema físico clásico con solución analítica, transferencia de calor 1D, mecánica de sólidos lineal 2D y

fluido-dinámica incompresible 2D. Se enfatizan conceptos como normalización y adimensionalización

de datos, ponderación adaptativa de funciones de pérdida y diseño de condiciones de frontera. La evalua-

ción consiste en un proyecto grupal que resuelve un benchmark y se contrasta con resultados obtenidos

por simulación numérica. El taller articula modelado físico y aprendizaje automático, fortaleciendo la

programación científica, el análisis crítico y el trabajo colaborativo, ofreciendo simultáneamente linea-

mientos transferibles para la enseñanza de la ingeniería.

Keywords: Engineering Education; Physics-Informed Neural Networks (PINNs); Mechanical Enginee-

ring.

Abstract. This paper presents a short workshop for teaching numerical methods at the School of Engi-

neering of Universidad de la República (UdelaR) that integrates deep neural networks and, in particular,

PINNs as a complement to traditional approaches. The workshop combines weekly modules with lec-

tures and interactive notebooks, guiding learners from a basic neural network to PINN applications for

differential-equation problems. Case studies include: a classical physical system with a known analy-

tical solution, 1D heat transfer, 2D linear solid mechanics, and 2D incompressible fluid dynamics. We

emphasize variable normalization and non-dimensionalization, adaptive loss weighting, and boundary-

condition design. Assessment is a group project that solves a benchmark and contrasts results with nu-

merical simulation. The workshop links physical modeling and machine learning, strengthens scientific

programming, critical analysis, and collaborative work, and offers transferable guidelines for enginee-

ring education.
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1. INTRODUCCIÓN

La incorporación de modelos de aprendizaje automático en combinación con el conocimien-

to físico ha dado lugar, en los últimos años, al área emergente del scientific machine learning.

En este marco, las physics-informed neural networks (PINNs) se han consolidado como una

herramienta prometedora para resolver problemas descritos por ecuaciones en derivadas parcia-

les (PDEs). A diferencia de los enfoques puramente basados en datos, las PINNs imponen de

manera explícita las leyes físicas que gobiernan el sistema sobre la salida de la red neuronal,

garantizando soluciones consistentes con los modelos matemáticos subyacentes (Raissi et al.,

2019). El potencial de las PINNs se debe, en gran medida, a los avances recientes en capacidad

de cómputo, algoritmos de entrenamiento y métodos de diferenciación automática. Si bien la

idea de utilizar redes neuronales para aproximar soluciones de PDEs surgió en la década de

1990, solo en la actualidad se dispone de las herramientas necesarias para aplicarla de manera

práctica y eficiente en problemas complejos. Entre sus ventajas destaca la posibilidad de obte-

ner soluciones continuas en todo el dominio espacio-temporal sin recurrir a mallas rígidas, lo

que reduce el costo computacional y permite trabajar con puntos de entrenamiento distribuidos

de forma irregular. Asimismo, como plantean Cuomo et al. (2022), las PINNs ofrecen un marco

flexible para integrar datos experimentales o de simulación en el proceso de entrenamiento. So-

bre esta base conceptual surge el desafío de cómo introducir a los estudiantes a una herramienta

computacional con gran proyección y potencial de desarrollo en los próximos años. En este

trabajo se presenta una experiencia docente orientada a la enseñanza de PINNs como comple-

mento de los métodos numéricos tradicionales. La propuesta se materializa en un taller de corta

duración que combina clases expositivas con instancias prácticas en entornos de programación

interactivos. A lo largo de distintos módulos, los estudiantes utilizan notebooks diseñados para

fomentar una comprensión activa tanto de los fundamentos teóricos como de su implementación

práctica, abordando progresivamente problemas de mayor complejidad: desde ecuaciones con

solución analítica hasta aplicaciones en transferencia de calor, mecánica del sólido y dinámica

de los fluidos. Con el avance del curso se incorporan progresivamente técnicas adicionales, tales

como la normalización y adimensionalización de variables, la formulación de condiciones de

frontera y el uso de penalizaciones adaptativas en la función de pérdida. La instancia final de

evaluación se basa en un trabajo grupal, donde cada equipo debe aplicar lo aprendido en la reso-

lución de un problema específico planteado por el cuerpo docente, integrando tanto los aspectos

teóricos como las consideraciones prácticas de la implementación. Esta experiencia busca no

solo introducir a los estudiantes al uso de PINNs, sino también fortalecer competencias en pro-

gramación científica, análisis crítico, modelado físico y resolución colaborativa de problemas.

De esta manera, el curso promueve el uso de metodologías modernas que amplían el repertorio

de herramientas para enfrentar problemas de ingeniería y ciencias aplicadas.

2. CONTEXTO INSTITUCIONAL

El Instituto de Ingeniería Mecánica y Producción Industrial (IIMPI) de la Facultad de In-

geniería, Udelar, es responsable de la formación de grado y posgrado en Ingeniería Industrial

Mecánica, y desarrolla docencia, investigación y asesoramiento en áreas clave como diseño

mecánico, termodinámica aplicada y producción industrial. En este marco, el Departamento de

Diseño Mecánico (DDM) dicta cursos de diseño, mecánica del sólido, robótica, instrumentación

y control, y en los últimos años impulsó la incorporación de herramientas de cálculo numérico
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para fortalecer competencias digitales y computacionales.

Como parte de esta innovación pedagógica y alineado con las áreas del DDM, se diseñó un

taller breve para introducir redes neuronales aplicadas a problemas de ingeniería mecánica. Esta

propuesta, inédita en la carrera, busca integrar herramientas de Machine Learning al aprendi-

zaje de la mecánica y potenciar la resolución de problemas, lo que exigió ajustar modalidad y

metodología de enseñanza para favorecer una comprensión integral y explorar el potencial de

estas técnicas en el ámbito de la ingeniería.

3. METODOLOGÍA

La metodología empleada integra elementos de enfoques ampliamente discutidos en la lite-

ratura educativa. En primer lugar, se vincula con las estrategias de active learning, entendidas

como aquellas que buscan la participación activa del estudiante en actividades significativas,

rompiendo con la pasividad del modelo expositivo tradicional (Prince, 2004). En este sentido,

el uso de notebooks interactivos con códigos incompletos y la resolución guiada de proble-

mas constituyen instancias de involucramiento activo que promueven la construcción de cono-

cimiento y el razonamiento crítico. Asimismo, el trabajo en pequeños grupos para discutir e

implementar las secciones faltantes del código refleja principios de collaborative y cooperative

learning, los cuales han demostrado beneficios en la retención, la motivación y el desarrollo de

habilidades interpersonales en contextos de ingeniería (Prince, 2004). Por otra parte, el taller

guarda una estrecha relación con el Problem-Based Learning (PBL), dado que cada sesión se

organiza a partir de un problema de ingeniería que actúa como eje articulador del aprendiza-

je. Esta estrategia, en línea con lo señalado por Barrows (1996), fomenta tanto la integración

de conocimientos de distintas áreas como la adquisición de competencias en auto-aprendizaje,

resolución de problemas y trabajo en equipo, consideradas fundamentales en la formación de

ingenieros. El taller se desarrolla a lo largo de cinco sesiones de tres horas cada una, en una mo-

dalidad híbrida que combina la exposición teórica con actividades prácticas en computadora.

La organización de los contenidos fue diseñada con el objetivo de que estudiantes con cono-

cimientos básicos de programación, pero con una formación avanzada en diversas áreas de la

ingeniería mecánica (mecánica del sólido, transferencia de calor, dinámica de fluidos, entre

otras), sean capaces de seguir adecuadamente el curso y aprovechar su desarrollo. La propuesta

pedagógica se fundamenta en una construcción progresiva del conocimiento, estructurada de

manera escalonada: en primer lugar, se presenta la herramienta; posteriormente se aplica en

un contexto específico; luego se modifica para explorar variaciones; y finalmente, se refuerza

mediante la práctica y la repetición. Con esta estrategia, se busca que los estudiantes no solo

adquieran conceptos y metodologías, sino que también desarrollen la capacidad de adaptarlos

a diferentes contextos a partir de un razonamiento analítico aplicado a cada sistema particular.

Cada tema se introduce a través de un caso de estudio vinculado a un problema de ingeniería.

Esta metodología permite incrementar de manera simultánea la complejidad y la capacidad de la

herramienta presentada y la dificultad del problema abordado, favoreciendo así un aprendizaje

progresivo y contextualizado.

3.1. Formato de código interactivo - Jupyter Notebook

Para la experimentación computacional se recurre a recursos gratis y de fácil acceso en la

nube, en particular a la plataforma proporcionada por Google (2024), Google Colab, para la

cual el único requerimiento es poseer una cuenta de Google. Este entorno permite a los usuarios
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escribir y ejecutar código Python a través de su navegador web, ofreciendo acceso a recursos

computacionales como GPUs, sin necesidad de instalar software en la PC. En cada sesión, se

presenta el caso de estudio y se analizan las características físicas que difieren del caso an-

terior para planificar el abordaje que se realizará sobre el mismo. A continuación se entrega

a los estudiantes un conjunto de notebooks con códigos incompletos en secciones considera-

das fundamentales, que deben ser completados tanto de manera individual como colaborativa,

discutiendo cómo implementar los vacíos. Este enfoque promueve la integración activa e inme-

diata de los conceptos y herramientas trabajados en clase, dado que los vacíos en los códigos

se corresponden directamente con las nuevas herramientas incorporadas en cada sesión. Así se

espera consolidar el aprendizaje a través de la práctica guiada y el trabajo autónomo, enfocado

principalmente en los conceptos que se espera que el estudiante adquiera en esta etapa, sin que

resulte particularmente intenso desde el punto de vista de la programación. En este contexto,

los Jupyter Notebooks resultaron especialmente adecuados porque reúnen en un mismo entorno

código ejecutable, texto, ecuaciones y visualizaciones. Como señala Granger y Pérez (2021),

su flexibilidad los convierte en una herramienta idónea para la enseñanza en disciplinas STEM

(Ciencia, Tecnología, Ingeniería y Matemáticas), al promover el pensamiento computacional y

la comunicación de resultados mediante narrativas reproducibles. En el taller, esta integración

permitió a los estudiantes comprender el problema, implementar soluciones y documentar su ra-

zonamiento de forma práctica, fortaleciendo el vínculo entre teoría y aplicación. Además, el uso

de notebooks puso en primer plano el rol activo del estudiante, la resolución de problemas reales

y la apropiación de herramientas que orientan eficazmente la construcción del conocimiento.

3.2. Diseño de Casos de estudio para clases

Los casos diseñados para el aprendizaje se fundamentaron en referencias bibliográficas espe-

cificas de cada tema y en datos generados a partir de simulaciones numéricas, empleando tanto

software comercial como herramientas de desarrollo propio, previamente validadas. Esta estra-

tegia garantizó la calidad y confiabilidad de la información utilizada, así como su pertinencia

en el contexto de enseñanza. A partir de estos insumos, se construyó un conjunto de problemas

con datos disponibles que actúan como base común para la experimentación de los estudiantes.

La selección de los casos buscó cubrir diferentes niveles de complejidad, desde problemas in-

troductorios con soluciones analíticas conocidas hasta situaciones más avanzadas que requieren

el uso de métodos numéricos. De este modo, los estudiantes pudieron transitar gradualmente

desde la comprensión conceptual hacia la resolución de escenarios cercanos a la realidad de

la ingeniería. El diseño de los casos también consideró criterios pedagógicos, tales como la

posibilidad de fragmentar los problemas en etapas y fomentar la discusión grupal. Además, se

priorizó que los problemas enmarquen casos bases de cada disciplina de la ingeniería mecá-

nica, de modo que los estudiantes pudieran desarrollar competencias para analizar, interpretar

y validar resultados, en las distintas áreas de actuación. En el siguiente apartado se detalla la

distribución de contenidos por sesión donde se aprecia la evolución de la temática.

Clase 1: Introducción a las Redes Neuronales

La primera clase introdujo los fundamentos del aprendizaje automático y de las redes neuro-

nales feed-forward. Se revisaron el perceptrón, los pesos y el sesgo, las funciones de activación

y la arquitectura en capas (entrada, ocultas y salida). Además, se explicó la propagación hacia

adelante (forward propagation), la función de pérdida y el cálculo de gradientes mediante re-
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tropropagación automática (automatic differentiation) dentro de un grafo computacional. Tam-

bién se presentaron hiperparámetros relevantes—tasa de aprendizaje, optimizadores (ADAM,

BFGS) y número de épocas—y su impacto en el entrenamiento. La sesión culminó con un

ejercicio práctico: aproximar una función discontinua compuesta por un tramo logarítmico pa-

ra valores negativos y un tramo senoidal de amplitud decreciente para valores positivos. En la

Fig. 1 se muestra la función partida (Fig. 1a), los puntos de entrenamiento y la predicción de la

red (Fig. 1b).

(a) Problema matemático propuesto. (b) Predicción de la red neuronal.

Figura 1: Problema de la clase 1

Clase 2: Introducción a PINNs mediante un Oscilador

En la segunda clase se introdujo el concepto de PINNs, enfatizando la incorporación explícita

de información física en el entrenamiento de redes neuronales. Como caso de estudio, se trabajó

con el problema del oscilador armónico amortiguado que se aprecia en la Fig. 2. Este problema

tiene una solución analítica conocida que se presenta en la Ec. 1 para las condiciones iniciales

definidas. Junto con los estudiantes se llegó a esta solución que luego fue utilizada para la

generación sintética de datos para el entrenamiento. Además, se abordó la identificación de

parámetros y el proceso de adimensionalización del sistema, analizando como la incorporación

de esta estrategia favorece el entrenamiento de la red.

Figura 2: Oscilador.

u(t) =
g

ω2

(

1−
e−ξωt cos(ωt+ ϕ)

cos(ϕ)

)

(1)
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Clase 3: Conducción de Calor 1D en Aletas

La tercera sesión se centró en un problema de transferencia de calor en aletas, en estado

estacionario, considerando la temperatura uniforme en cada sección y perdidas de calor por

convección y radiación, como se muestra en el esquema presentado en la Fig. 3.

Figura 3: Problema de Conducción de

Calor 1D en Aletas.

∂

∂x∗

(

(1 + ϵCθ)
∂θ

∂x∗

)

−N2θ+N2G(1+ϵGθ) = 0 (2)

Para este caso se siguió uno de los ejemplos presentados por Oommen y Srinivasan (2022).

Se discutió la formulación física del sistema y su resolución, para luego trasladarlo al marco

de las PINNs. Se trabajó con la forma adimensionalizada de la ecuación de calor para una

aleta según se define en la Ec. 2, la implementación de condiciones de borde y la comparación

de distintos optimizadores (L-BFGS y ADAM). Asimismo, se introdujo la importancia de la

normalización de los datos de entrada y la identificación de parámetros a partir del ajuste del

modelo. (Por detalles sobre el modelado físico del sistema se refiere al lector a Oommen y

Srinivasan (2022)).

Clase 4: Problema Mecánica del Sólido en 2D

La cuarta clase abordó un caso de mecánica de sólidos: una placa en estado plano de tensio-

nes, sometida a una carga distribuida en el extremo, como se muestra en la Fig. 4. En trabajo

conjunto con el grupo de estudiantes se revisó la formulación física que gobierna un problema

de mecánica del sólido lineal, definida por la Ec. 3.

Figura 4: Problema de Mecánica del sólido 2D.

∇.σ = 0 donde: σ =





σxx

σyy

τxy



 =
E

1− ν2







1 ν 0
ν 1 0

0 0
1− ν

2






.





∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x



 (3)
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A partir de la simulación realizada con el Software FEBio Studio se obtuvieron los datos de

referencia (validados), que se emplearon para el cálculo y la comparación de errores. Parale-

lamente se implementó la red neuronal correspondiente y fueron aplicaron las condiciones de

borde pertinentes al problema estructural. Esta instancia permitió profundizar en la identifica-

ción de parámetros y en técnicas de normalización de datos.

Clase 5: Flujo en Canal 2D Transitorio

La última sesión del taller estuvo orientada al abordaje de un problema de dinámica de flui-

dos: el flujo en un canal bidimensional con obstáculo en régimen transitorio, problema que

es presentado en la Fig. 5. Este caso se fundamenta en el trabajo presentado por Raissi et al.

(2019), cuya solución de referencia se obtiene mediante simulación numérica. Considerando

las simplificaciones de bidimensionalidad y la hipótesis de flujo incompresible, las ecuaciones

de Navier-Stokes adimensionalizadas quedan definidas por las Ecs. 4. Sin embargo, para las

condiciones de borde y las iniciales del sistema en este caso se utilizó una estrategia diferente

que implica el uso de datos de simulación. Es decir, en lugar de forzar a que la red aprenda la

física en los bordes (temporal y espacial), se la obliga a ajustar datos en estas circunstancias,

mostrando una alternativa factible para la resolución de problemas.

Figura 5: Canal de flujo bidimensional con obstáculo.

u
∗

· ∇u
∗ = −∇p∗ +

1

Re
∇

2
u
∗, ∇ · u

∗ = 0 (4)

En esta instancia se integraron de manera conjunta todas las herramientas previamente presen-

tadas a lo largo del curso: la formulación del problema físico, la implementación de condiciones

de borde e iniciales, y la normalización de los datos. Asimismo, se introdujo la utilización de

pesos adaptativos en la función de pérdida, subrayando su relevancia para equilibrar los distin-

tos términos durante el entrenamiento en problemas complejos de fluido dinámica.

La disponibilidad de estos casos constituye una base sólida para futuros talleres, ya que per-

mite reutilizar, adaptar y expandir los problemas hacia nuevos contextos. A partir de la experien-

cia adquirida, es posible orientar la propuesta hacia desafíos más complejos, cuyo proceso de

resolución se encuentre documentado y validado, asegurando así la continuidad y escalabilidad

del aprendizaje.

4. EVALUACIÓN DEL CURSO

La evaluación del curso se estructuró en formato de proyecto, donde los estudiantes debieron

resolver un problema de ingeniería planteado por el equipo docente a partir de datos obtenidos

Mecánica Computacional Vol XLII, págs. 1159-1168 (2025) 1165

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


mediante simulaciones numéricas. Se propusieron tres problemas de referencia: uno asociado a

la transferencia de calor bidimensional en estado transitorio en un sólido isotrópico presentado

en la Fig. 6(a), otro problema de fluido dinámica en un canal con un escalón que se muestra en

la Fig. 6(b), y el último relacionado a un problema de mecánica del sólido tridimensional bajo

cargas dinámicas de compresión presentado en la Fig. 6(c). El número de estudiantes en esta

Figura 6: Ejemplos de problemas físicos abordados: (a) transferencia de calor, (b) fluidodiná-

mica, y (c) mecánica del sólido.

primera oportunidad fue reducido por lo que se optó por armar dos grupos de estudiantes (uno

de tres, grupo G1, y otro de dos, grupo G2) para trabajar cada uno en un problema a elección.

El grupo G1 seleccionó el problema de termodinámica mientras que el grupo G2 decidió tra-

bajar en el problema de mecánica del sólido. Cada proyecto incluyó un conjunto de datos base

(temperaturas o desplazamientos, según el caso) y una serie de tareas progresivas. Las pautas se

pueden encontrar en el siguiente link. Estas abarcaron desde la representación gráfica de resul-

tados hasta la implementación de PINNs con distintas configuraciones, incorporando técnicas

como normalización, adimensionalización y asignación de pesos adaptativos en la función de

pérdida, tópicos vistos e implementados en clase. Asimismo, se solicitó la identificación de pa-

rámetros físicos relevantes (por ejemplo, difusividad térmica, módulo de Young y coeficiente

de Poisson) y el análisis de robustez frente a la incorporación de ruido en los datos. El trabajo

final consistió en la entrega de los códigos desarrollados y un informe en formato PDF donde

los estudiantes documentaron las técnicas utilizadas, la arquitectura y los hiperparámetros se-

leccionados, la evolución de las funciones de pérdida y métricas de desempeño (error relativo y

absoluto). Además, se requirió un análisis crítico de los resultados obtenidos y una conclusión

que integrara los aprendizajes alcanzados. Este formato de evaluación, basado en la resolución

autónoma y colaborativa de problemas abiertos, buscó fomentar la aplicación práctica de las he-

rramientas introducidas durante el taller, al tiempo que promovió el desarrollo de competencias

analíticas, de investigación y comunicación técnica en los estudiantes.

5. RESULTADOS OBTENIDOS Y VALORACIÓN DE LA EXPERIENCIA

A modo ilustrativo se presentan algunos resultados de ambos equipos, los cuales cumplieron

satisfactoriamente con la pauta del problema. En ambos casos, el flujo de trabajo incluyó: (i)

preprocesamiento de los datos para entender la estructura y evolución de las variables; (ii) de-

sarrollo de una PINN base para predecir el campo de temperatura o los desplazamientos (según

el caso); y (iii) aplicación de las estrategias de mejora vistas en el taller, que fueron elevando

gradualmente la calidad de las predicciones. En particular, el grupo G1 (transferencia de calor),
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tras adimensionalizar la ecuación gobernante, normalizar los datos y sintonizar los pesos de las

funciones de pérdida, alcanzó errores máximos del 8% en el campo de temperaturas (Fig. 7).

Además, en un estudio adicional con distintos niveles de ruido (no mostrado aquí), la precisión

se mantuvo razonable, sin superar el 15 % de error en el peor de los casos (5 % de ruido gaus-

siano).

Figura 7: Predicción obtenida por los estudiantes del grupo G1

Por otro lado, el grupo G2 que trabajo con el problema de dinámica de un solido tridimensional

a compresión, también presenta resultados progresivamente mejores, hasta alcanzar un error

máximo en la predicción de los desplazamientos de 10% como se muestra en la Fig. 8. Estos

resultados se obtuvieron una vez normalizados los datos de entrada e implementar un algoritmo

de pesos adaptativos para las funciones de pérdida.

Figura 8: Predicción obtenida por los estudiantes del grupo G2

6. CONCLUSIONES

Previo a la evaluación de los informes entregados por los estudiantes, la valoración docente

relativa del taller es muy positiva. Aunque, como primera experiencia, hay aspectos a mejorar,

se destacan:

Un acercamiento temprano de los estudiantes a una temática que parecía lejana y hoy

acorta brechas, ampliando recursos para resolver problemas diversos.

Un taller hands on, pensado para transferir de inmediato lo aprendido a casos reales de

ingeniería mecánica.
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Alto potencial de escalado por su transversalidad y adaptación: basta cambiar los casos;

la teoría de machine learning subyacente permanece.

Notorio interés en clase, que aunque es una variable inmensurable, queda evidenciado por

la disposición al trabajo y la curiosidad mostrada por los participantes en clase.

Por otro lado, en lo que respecta a los trabajos presentados por los grupos, ambos informes

muestran una gran dedicación. No solo por la cantidad y calidad del producto en si, sino tam-

bién al considerar que se los está evaluando en un área completamente nueva para los estudiantes

de la carrera de Ingeniería Industrial Mecánica de la Facultad de Ingeniería de la UdelaR, por

lo que resultan aún más valiosos cada uno de los resultados. Ambos grupos presentan informes

completos y detallados que cumplen la pauta y guían al lector por un desarrollo incremental

de la solución, mejorado con las técnicas vistas en clase: primero resuelven el campo de la

variable de interés incorporando la física en todo el rango temporal; luego aplican normaliza-

ción/adimensionalización; y, finalmente, ponderan las funciones de pérdida para balancear la

atención del algoritmo. Estas estrategias abordan las principales áreas de mejora de una Red

Neuronal Informada por Física, evidenciando que los estudiantes no solo incorporaron una nue-

va herramienta para enfrentar problemas de ingeniería, sino que también desarrollaron criterios

para mejorarlas en sus aspectos clave.
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