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Resumen. Este trabajo presenta un breve taller para la ensefianza de métodos numéricos en la Facul-
tad de Ingenieria de la Universidad de la Republica (UdelaR) que integra redes neuronales profundas vy,
en particular, PINNs como complemento de los enfoques tradicionales. La propuesta combina médulos
semanales con clases y notebooks interactivos, guiando desde una red neuronal bdsica hasta aplicacio-
nes de PINNs a problemas gobernados por ecuaciones diferenciales. Los casos abarcan: ecuacién de un
sistema fisico cldsico con solucién analitica, transferencia de calor 1D, mecdnica de sé6lidos lineal 2D y
fluido-dindmica incompresible 2D. Se enfatizan conceptos como normalizacién y adimensionalizacién
de datos, ponderacion adaptativa de funciones de pérdida y disefio de condiciones de frontera. La evalua-
cidén consiste en un proyecto grupal que resuelve un benchmark y se contrasta con resultados obtenidos
por simulacién numérica. El taller articula modelado fisico y aprendizaje automatico, fortaleciendo la
programacion cientifica, el andlisis critico y el trabajo colaborativo, ofreciendo simultineamente linea-
mientos transferibles para la ensefianza de la ingenieria.

Keywords: Engineering Education; Physics-Informed Neural Networks (PINNs); Mechanical Enginee-
ring.

Abstract. This paper presents a short workshop for teaching numerical methods at the School of Engi-
neering of Universidad de la Republica (UdelaR) that integrates deep neural networks and, in particular,
PINNSs as a complement to traditional approaches. The workshop combines weekly modules with lec-
tures and interactive notebooks, guiding learners from a basic neural network to PINN applications for
differential-equation problems. Case studies include: a classical physical system with a known analy-
tical solution, 1D heat transfer, 2D linear solid mechanics, and 2D incompressible fluid dynamics. We
emphasize variable normalization and non-dimensionalization, adaptive loss weighting, and boundary-
condition design. Assessment is a group project that solves a benchmark and contrasts results with nu-
merical simulation. The workshop links physical modeling and machine learning, strengthens scientific
programming, critical analysis, and collaborative work, and offers transferable guidelines for enginee-
ring education.
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1. INTRODUCCION

La incorporacién de modelos de aprendizaje automético en combinacion con el conocimien-
to fisico ha dado lugar, en los ultimos afios, al drea emergente del scientific machine learning.
En este marco, las physics-informed neural networks (PINNs) se han consolidado como una
herramienta prometedora para resolver problemas descritos por ecuaciones en derivadas parcia-
les (PDEs). A diferencia de los enfoques puramente basados en datos, las PINNs imponen de
manera explicita las leyes fisicas que gobiernan el sistema sobre la salida de la red neuronal,
garantizando soluciones consistentes con los modelos matematicos subyacentes (Raissi et al.,
2019). El potencial de las PINNs se debe, en gran medida, a los avances recientes en capacidad
de computo, algoritmos de entrenamiento y métodos de diferenciaciéon automadtica. Si bien la
idea de utilizar redes neuronales para aproximar soluciones de PDEs surgié en la década de
1990, solo en la actualidad se dispone de las herramientas necesarias para aplicarla de manera
préactica y eficiente en problemas complejos. Entre sus ventajas destaca la posibilidad de obte-
ner soluciones continuas en todo el dominio espacio-temporal sin recurrir a mallas rigidas, lo
que reduce el costo computacional y permite trabajar con puntos de entrenamiento distribuidos
de forma irregular. Asimismo, como plantean Cuomo et al. (2022), las PINNs ofrecen un marco
flexible para integrar datos experimentales o de simulacidn en el proceso de entrenamiento. So-
bre esta base conceptual surge el desafio de como introducir a los estudiantes a una herramienta
computacional con gran proyeccion y potencial de desarrollo en los proximos afios. En este
trabajo se presenta una experiencia docente orientada a la ensefianza de PINNs como comple-
mento de los métodos numéricos tradicionales. La propuesta se materializa en un taller de corta
duracién que combina clases expositivas con instancias practicas en entornos de programacion
interactivos. A lo largo de distintos mddulos, los estudiantes utilizan notebooks disefiados para
fomentar una comprension activa tanto de los fundamentos tedricos como de su implementacion
practica, abordando progresivamente problemas de mayor complejidad: desde ecuaciones con
solucién analitica hasta aplicaciones en transferencia de calor, mecénica del sélido y dindmica
de los fluidos. Con el avance del curso se incorporan progresivamente técnicas adicionales, tales
como la normalizacién y adimensionalizacién de variables, la formulacion de condiciones de
frontera y el uso de penalizaciones adaptativas en la funcién de pérdida. La instancia final de
evaluacion se basa en un trabajo grupal, donde cada equipo debe aplicar lo aprendido en la reso-
lucién de un problema especifico planteado por el cuerpo docente, integrando tanto los aspectos
tedricos como las consideraciones practicas de la implementacion. Esta experiencia busca no
solo introducir a los estudiantes al uso de PINNs, sino también fortalecer competencias en pro-
gramacion cientifica, andlisis critico, modelado fisico y resolucién colaborativa de problemas.
De esta manera, el curso promueve el uso de metodologias modernas que amplian el repertorio
de herramientas para enfrentar problemas de ingenieria y ciencias aplicadas.

2. CONTEXTO INSTITUCIONAL

El Instituto de Ingenieria Mecéanica y Produccién Industrial (IIMPI) de la Facultad de In-
genieria, Udelar, es responsable de la formacion de grado y posgrado en Ingenieria Industrial
Mecénica, y desarrolla docencia, investigacién y asesoramiento en dreas clave como disefio
mecdnico, termodindmica aplicada y produccion industrial. En este marco, el Departamento de
Disefio Mecanico (DDM) dicta cursos de disefio, mecanica del sdlido, robdtica, instrumentacion
y control, y en los tltimos afios impulsé la incorporacién de herramientas de calculo numérico
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para fortalecer competencias digitales y computacionales.

Como parte de esta innovacion pedagdgica y alineado con las areas del DDM, se disefié un
taller breve para introducir redes neuronales aplicadas a problemas de ingenieria mecédnica. Esta
propuesta, inédita en la carrera, busca integrar herramientas de Machine Learning al aprendi-
zaje de la mecdnica y potenciar la resolucién de problemas, lo que exigi6 ajustar modalidad y
metodologia de ensefianza para favorecer una comprension integral y explorar el potencial de
estas técnicas en el dmbito de la ingenieria.

3. METODOLOGIA

La metodologia empleada integra elementos de enfoques ampliamente discutidos en la lite-
ratura educativa. En primer lugar, se vincula con las estrategias de active learning, entendidas
como aquellas que buscan la participacion activa del estudiante en actividades significativas,
rompiendo con la pasividad del modelo expositivo tradicional (Prince, 2004). En este sentido,
el uso de notebooks interactivos con codigos incompletos y la resolucion guiada de proble-
mas constituyen instancias de involucramiento activo que promueven la construccién de cono-
cimiento y el razonamiento critico. Asimismo, el trabajo en pequefios grupos para discutir e
implementar las secciones faltantes del cédigo refleja principios de collaborative y cooperative
learning, los cuales han demostrado beneficios en la retencién, la motivacién y el desarrollo de
habilidades interpersonales en contextos de ingenieria (Prince, 2004). Por otra parte, el taller
guarda una estrecha relacion con el Problem-Based Learning (PBL), dado que cada sesion se
organiza a partir de un problema de ingenieria que actia como eje articulador del aprendiza-
je. Esta estrategia, en linea con lo sefialado por Barrows (1996), fomenta tanto la integracién
de conocimientos de distintas dreas como la adquisicién de competencias en auto-aprendizaje,
resolucion de problemas y trabajo en equipo, consideradas fundamentales en la formacién de
ingenieros. El taller se desarrolla a lo largo de cinco sesiones de tres horas cada una, en una mo-
dalidad hibrida que combina la exposicidn tedrica con actividades pricticas en computadora.
La organizacién de los contenidos fue disefiada con el objetivo de que estudiantes con cono-
cimientos basicos de programacion, pero con una formacién avanzada en diversas areas de la
ingenieria mecédnica (mecdnica del sélido, transferencia de calor, dindmica de fluidos, entre
otras), sean capaces de seguir adecuadamente el curso y aprovechar su desarrollo. La propuesta
pedagdgica se fundamenta en una construccion progresiva del conocimiento, estructurada de
manera escalonada: en primer lugar, se presenta la herramienta; posteriormente se aplica en
un contexto especifico; luego se modifica para explorar variaciones; y finalmente, se refuerza
mediante la préctica y la repeticion. Con esta estrategia, se busca que los estudiantes no solo
adquieran conceptos y metodologias, sino que también desarrollen la capacidad de adaptarlos
a diferentes contextos a partir de un razonamiento analitico aplicado a cada sistema particular.
Cada tema se introduce a través de un caso de estudio vinculado a un problema de ingenieria.
Esta metodologia permite incrementar de manera simultdnea la complejidad y la capacidad de la
herramienta presentada y la dificultad del problema abordado, favoreciendo asi un aprendizaje
progresivo y contextualizado.

3.1. Formato de codigo interactivo - Jupyter Notebook

Para la experimentacion computacional se recurre a recursos gratis y de facil acceso en la
nube, en particular a la plataforma proporcionada por Google (2024), Google Colab, para la
cual el unico requerimiento es poseer una cuenta de Google. Este entorno permite a los usuarios
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escribir y ejecutar codigo Python a través de su navegador web, ofreciendo acceso a recursos
computacionales como GPUs, sin necesidad de instalar software en la PC. En cada sesion, se
presenta el caso de estudio y se analizan las caracteristicas fisicas que difieren del caso an-
terior para planificar el abordaje que se realizard sobre el mismo. A continuacién se entrega
a los estudiantes un conjunto de notebooks con cédigos incompletos en secciones considera-
das fundamentales, que deben ser completados tanto de manera individual como colaborativa,
discutiendo como implementar los vacios. Este enfoque promueve la integracion activa e inme-
diata de los conceptos y herramientas trabajados en clase, dado que los vacios en los codigos
se corresponden directamente con las nuevas herramientas incorporadas en cada sesion. Asi se
espera consolidar el aprendizaje a través de la practica guiada y el trabajo auténomo, enfocado
principalmente en los conceptos que se espera que el estudiante adquiera en esta etapa, sin que
resulte particularmente intenso desde el punto de vista de la programacion. En este contexto,
los Jupyter Notebooks resultaron especialmente adecuados porque retinen en un mismo entorno
codigo ejecutable, texto, ecuaciones y visualizaciones. Como sefiala Granger y Pérez (2021),
su flexibilidad los convierte en una herramienta idonea para la ensefianza en disciplinas STEM
(Ciencia, Tecnologia, Ingenieria y Matemadticas), al promover el pensamiento computacional y
la comunicacién de resultados mediante narrativas reproducibles. En el taller, esta integracion
permitié a los estudiantes comprender el problema, implementar soluciones y documentar su ra-
zonamiento de forma préctica, fortaleciendo el vinculo entre teoria y aplicaciéon. Ademas, el uso
de notebooks puso en primer plano el rol activo del estudiante, la resolucién de problemas reales
y la apropiacién de herramientas que orientan eficazmente la construccién del conocimiento.

3.2. Diseiio de Casos de estudio para clases

Los casos disefiados para el aprendizaje se fundamentaron en referencias bibliograficas espe-
cificas de cada tema y en datos generados a partir de simulaciones numéricas, empleando tanto
software comercial como herramientas de desarrollo propio, previamente validadas. Esta estra-
tegia garantizé la calidad y confiabilidad de la informacion utilizada, asi como su pertinencia
en el contexto de ensefianza. A partir de estos insumos, se construyd un conjunto de problemas
con datos disponibles que actian como base comun para la experimentacion de los estudiantes.
La seleccion de los casos buscé cubrir diferentes niveles de complejidad, desde problemas in-
troductorios con soluciones analiticas conocidas hasta situaciones mds avanzadas que requieren
el uso de métodos numéricos. De este modo, los estudiantes pudieron transitar gradualmente
desde la comprension conceptual hacia la resolucion de escenarios cercanos a la realidad de
la ingenieria. El disefio de los casos también considerd criterios pedagdgicos, tales como la
posibilidad de fragmentar los problemas en etapas y fomentar la discusién grupal. Ademas, se
priorizé que los problemas enmarquen casos bases de cada disciplina de la ingenieria mecé-
nica, de modo que los estudiantes pudieran desarrollar competencias para analizar, interpretar
y validar resultados, en las distintas dreas de actuacion. En el siguiente apartado se detalla la
distribucién de contenidos por sesién donde se aprecia la evolucion de la temaética.

Clase 1: Introduccion a las Redes Neuronales

La primera clase introdujo los fundamentos del aprendizaje automético y de las redes neuro-
nales feed-forward. Se revisaron el perceptron, los pesos y el sesgo, las funciones de activacion
y la arquitectura en capas (entrada, ocultas y salida). Ademas, se explicé la propagacion hacia
adelante (forward propagation), la funcién de pérdida y el cdlculo de gradientes mediante re-
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tropropagacion automatica (automatic differentiation) dentro de un grafo computacional. Tam-
bién se presentaron hiperpardmetros relevantes—tasa de aprendizaje, optimizadores (ADAM,
BFGS) y niimero de épocas—y su impacto en el entrenamiento. La sesién culminé con un
ejercicio practico: aproximar una funcién discontinua compuesta por un tramo logaritmico pa-
ra valores negativos y un tramo senoidal de amplitud decreciente para valores positivos. En la
Fig. 1 se muestra la funcién partida (Fig. 1a), los puntos de entrenamiento y la prediccion de la
red (Fig. 1b).

— log(1-x)
0.5 4 —— sin(x)*e"(-x/4) —_— True

0.5 1 T == Predicted
train points

—lb 0 -7‘.5 -‘5‘.0 —ZI.5 0:0 2:5 5‘0 7.5 ID‘YO
(a) Problema matemadtico propuesto. (b) Prediccidn de la red neuronal.

Figura 1: Problema de la clase 1

Clase 2: Introduccion a PINNs mediante un Oscilador

En la segunda clase se introdujo el concepto de PINNs, enfatizando la incorporacién explicita
de informacion fisica en el entrenamiento de redes neuronales. Como caso de estudio, se trabajé
con el problema del oscilador arménico amortiguado que se aprecia en la Fig. 2. Este problema
tiene una solucién analitica conocida que se presenta en la Ec. 1 para las condiciones iniciales
definidas. Junto con los estudiantes se lleg6é a esta solucién que luego fue utilizada para la
generacion sintética de datos para el entrenamiento. Ademas, se abordé la identificacién de
parametros y el proceso de adimensionalizacion del sistema, analizando como la incorporacion
de esta estrategia favorece el entrenamiento de la red.

b e~ cos(w
u(t) x(t) u(t) = L <1 e COSEJ + ¢)> (1)

Y

Figura 2: Oscilador.
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Clase 3: Conduccion de Calor 1D en Aletas

La tercera sesion se centr6 en un problema de transferencia de calor en aletas, en estado
estacionario, considerando la temperatura uniforme en cada seccién y perdidas de calor por
conveccidn y radiacién, como se muestra en el esquema presentado en la Fig. 3.

060
oo (“ * 609)%) — N2+ N*G(1+e60) =0 (2)

Figura 3: Problema de Conduccién de
Calor 1D en Aletas.

Para este caso se sigui6 uno de los ejemplos presentados por Oommen y Srinivasan (2022).
Se discuti6 la formulacién fisica del sistema y su resolucién, para luego trasladarlo al marco
de las PINNs. Se trabaj6é con la forma adimensionalizada de la ecuacion de calor para una
aleta segun se define en la Ec. 2, la implementacion de condiciones de borde y la comparacion
de distintos optimizadores (L-BFGS y ADAM). Asimismo, se introdujo la importancia de la
normalizacion de los datos de entrada y la identificacién de pardmetros a partir del ajuste del
modelo. (Por detalles sobre el modelado fisico del sistema se refiere al lector a Oommen y
Srinivasan (2022)).

Clase 4: Problema Mecanica del Solido en 2D

La cuarta clase abord6 un caso de mecanica de sélidos: una placa en estado plano de tensio-
nes, sometida a una carga distribuida en el extremo, como se muestra en la Fig. 4. En trabajo
conjunto con el grupo de estudiantes se reviso la formulacién fisica que gobierna un problema
de mecénica del sélido lineal, definida por la Ec. 3.

VVVVVVVVVYY

Figura 4: Problema de Mecanica del sélido 2D.

o o v 0 ou/ox
V.o=0 donde: 0= |o,| = T v 1 1 9 nE ov /0y 3)
Tay v Ou/dy + Ov/0x
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A partir de la simulacion realizada con el Software FEBio Studio se obtuvieron los datos de
referencia (validados), que se emplearon para el cdlculo y la comparacién de errores. Parale-
lamente se implement6 la red neuronal correspondiente y fueron aplicaron las condiciones de
borde pertinentes al problema estructural. Esta instancia permitié profundizar en la identifica-
cion de pardmetros y en técnicas de normalizacién de datos.

Clase 5: Flujo en Canal 2D Transitorio

La ultima sesion del taller estuvo orientada al abordaje de un problema de dindmica de flui-
dos: el flujo en un canal bidimensional con obsticulo en régimen transitorio, problema que
es presentado en la Fig. 5. Este caso se fundamenta en el trabajo presentado por Raissi et al.
(2019), cuya solucién de referencia se obtiene mediante simulacion numérica. Considerando
las simplificaciones de bidimensionalidad y la hipdtesis de flujo incompresible, las ecuaciones
de Navier-Stokes adimensionalizadas quedan definidas por las Ecs. 4. Sin embargo, para las
condiciones de borde y las iniciales del sistema en este caso se utilizé una estrategia diferente
que implica el uso de datos de simulacion. Es decir, en lugar de forzar a que la red aprenda la
fisica en los bordes (temporal y espacial), se la obliga a ajustar datos en estas circunstancias,
mostrando una alternativa factible para la resolucién de problemas.

P uniforme

Figura 5: Canal de flujo bidimensional con obstaculo.

1
Re
En esta instancia se integraron de manera conjunta todas las herramientas previamente presen-
tadas a lo largo del curso: la formulacién del problema fisico, la implementacién de condiciones
de borde e iniciales, y la normalizacién de los datos. Asimismo, se introdujo la utilizacién de
pesos adaptativos en la funcién de pérdida, subrayando su relevancia para equilibrar los distin-
tos términos durante el entrenamiento en problemas complejos de fluido dindmica.

u*-vVu*t = —-Vp* + —V3u*, V-u"'=0 4)

La disponibilidad de estos casos constituye una base sélida para futuros talleres, ya que per-
mite reutilizar, adaptar y expandir los problemas hacia nuevos contextos. A partir de la experien-
cia adquirida, es posible orientar la propuesta hacia desafios mas complejos, cuyo proceso de
resolucién se encuentre documentado y validado, asegurando asi la continuidad y escalabilidad
del aprendizaje.

4. EVALUACION DEL CURSO

La evaluacidn del curso se estructurd en formato de proyecto, donde los estudiantes debieron
resolver un problema de ingenieria planteado por el equipo docente a partir de datos obtenidos
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mediante simulaciones numéricas. Se propusieron tres problemas de referencia: uno asociado a
la transferencia de calor bidimensional en estado transitorio en un sélido isotropico presentado
en la Fig. 6(a), otro problema de fluido dindmica en un canal con un escalén que se muestra en
la Fig. 6(b), y el dltimo relacionado a un problema de mecanica del sélido tridimensional bajo
cargas dindmicas de compresion presentado en la Fig. 6(c). El nimero de estudiantes en esta

@\-‘CCL‘ 1on v=1 m/s

p uniforme

(IJ}—TE\

ony ccu@
C{}n'.-'ecci@

(a) & -

AR oD 5 5 5

q" uniforme

p uniforme

Figura 6: Ejemplos de problemas fisicos abordados: (a) transferencia de calor, (b) fluidodina-
mica, y (c) mecénica del solido.

primera oportunidad fue reducido por lo que se opt6 por armar dos grupos de estudiantes (uno
de tres, grupo G1, y otro de dos, grupo G2) para trabajar cada uno en un problema a eleccion.
El grupo G1 selecciono el problema de termodindmica mientras que el grupo G2 decidio tra-
bajar en el problema de mecénica del s6lido. Cada proyecto incluy6 un conjunto de datos base
(temperaturas o desplazamientos, segun el caso) y una serie de tareas progresivas. Las pautas se
pueden encontrar en el siguiente link. Estas abarcaron desde la representacion grafica de resul-
tados hasta la implementacién de PINNs con distintas configuraciones, incorporando técnicas
como normalizacidn, adimensionalizacién y asignacion de pesos adaptativos en la funcion de
pérdida, topicos vistos e implementados en clase. Asimismo, se solicité la identificacion de pa-
rametros fisicos relevantes (por ejemplo, difusividad térmica, médulo de Young y coeficiente
de Poisson) y el andlisis de robustez frente a la incorporacion de ruido en los datos. El trabajo
final consistié en la entrega de los codigos desarrollados y un informe en formato PDF donde
los estudiantes documentaron las técnicas utilizadas, la arquitectura y los hiperpardmetros se-
leccionados, la evolucion de las funciones de pérdida y métricas de desempefio (error relativo y
absoluto). Ademas, se requiri6é un andlisis critico de los resultados obtenidos y una conclusion
que integrara los aprendizajes alcanzados. Este formato de evaluacién, basado en la resolucién
auténoma y colaborativa de problemas abiertos, buscé fomentar la aplicacién practica de las he-
rramientas introducidas durante el taller, al tiempo que promovié el desarrollo de competencias
analiticas, de investigacion y comunicacion técnica en los estudiantes.

5. RESULTADOS OBTENIDOS Y VALORACION DE LA EXPERIENCIA

A modo ilustrativo se presentan algunos resultados de ambos equipos, los cuales cumplieron
satisfactoriamente con la pauta del problema. En ambos casos, el flujo de trabajo incluyo: (i)
preprocesamiento de los datos para entender la estructura y evolucion de las variables; (ii) de-
sarrollo de una PINN base para predecir el campo de temperatura o los desplazamientos (segin
el caso); y (iii) aplicacion de las estrategias de mejora vistas en el taller, que fueron elevando
gradualmente la calidad de las predicciones. En particular, el grupo G1 (transferencia de calor),
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tras adimensionalizar la ecuacion gobernante, normalizar los datos y sintonizar los pesos de las
funciones de pérdida, alcanzé errores maximos del 8 % en el campo de temperaturas (Fig. 7).
Ademds, en un estudio adicional con distintos niveles de ruido (no mostrado aqui), la precisién
se mantuvo razonable, sin superar el 15 % de error en el peor de los casos (5 % de ruido gaus-
siano).

Temperatura real [K] Temperatura predicha [K] Error absoluto [K]
320 0.104

0.08

0.10 4 320 0.10 4

0.08 - 0.08 1 0.08 - 0.06

315

<
— 0.06 — = 0.06 — = 0.06 - =
E x E X E 0.04
N 4 [ N 4 [ N 4 e
0.04 110 0.04 310 0.04 £
0.02 A 0.02 - 0.02 0.02
0.00 A 305 0.00 - 305 0.00 4
—0.05 0.00 0.05 —-0.05 0.00 0.05 —0.05 0.00 0.05
x [m] x [m] x [m]

Figura 7: Prediccién obtenida por los estudiantes del grupo G1

Por otro lado, el grupo G2 que trabajo con el problema de dindmica de un solido tridimensional
a compresion, también presenta resultados progresivamente mejores, hasta alcanzar un error
méximo en la prediccién de los desplazamientos de 10 % como se muestra en la Fig. 8. Estos
resultados se obtuvieron una vez normalizados los datos de entrada e implementar un algoritmo
de pesos adaptativos para las funciones de pérdida.

Error

0.1

fo.08
0.06
0.04
0.02

Figura 8: Prediccion obtenida por los estudiantes del grupo G2

o
10 2

6. CONCLUSIONES

Previo a la evaluacion de los informes entregados por los estudiantes, la valoraciéon docente
relativa del taller es muy positiva. Aunque, como primera experiencia, hay aspectos a mejorar,
se destacan:

» Un acercamiento temprano de los estudiantes a una temdtica que parecia lejana y hoy
acorta brechas, ampliando recursos para resolver problemas diversos.

= Un taller hands on, pensado para transferir de inmediato lo aprendido a casos reales de
ingenieria mecdnica.
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= Alto potencial de escalado por su transversalidad y adaptacion: basta cambiar los casos;
la teoria de machine learning subyacente permanece.

= Notorio interés en clase, que aunque es una variable inmensurable, queda evidenciado por
la disposicién al trabajo y la curiosidad mostrada por los participantes en clase.

Por otro lado, en lo que respecta a los trabajos presentados por los grupos, ambos informes
muestran una gran dedicacién. No solo por la cantidad y calidad del producto en si, sino tam-
bién al considerar que se los estd evaluando en un drea completamente nueva para los estudiantes
de la carrera de Ingenierfa Industrial Mecanica de la Facultad de Ingenieria de la UdelaR, por
lo que resultan ain més valiosos cada uno de los resultados. Ambos grupos presentan informes
completos y detallados que cumplen la pauta y guian al lector por un desarrollo incremental
de la solucion, mejorado con las técnicas vistas en clase: primero resuelven el campo de la
variable de interés incorporando la fisica en todo el rango temporal; luego aplican normaliza-
cién/adimensionalizacidn; y, finalmente, ponderan las funciones de pérdida para balancear la
atencion del algoritmo. Estas estrategias abordan las principales dreas de mejora de una Red
Neuronal Informada por Fisica, evidenciando que los estudiantes no solo incorporaron una nue-
va herramienta para enfrentar problemas de ingenieria, sino que también desarrollaron criterios
para mejorarlas en sus aspectos clave.
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