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Resumen. Se presenta una experiencia de enseñanza integrada entre Física y Matemática, desarrollada
en colaboración entre el Centro Universitario Regional del Litoral Norte (Universidad de la Repúbli-
ca) y dos Centros Regionales de Profesores del Uruguay. La propuesta aplica métodos numéricos a la
resolución de problemas físicos que involucran ecuaciones diferenciales lineales y no lineales. Como
caso de estudio, se aborda un sistema masa–resorte amortiguado con interacción magnética, que combi-
na principios de la mecánica clásica y el electromagnetismo. El proyecto integra métodos tradicionales,
como Euler y Runge–Kutta de cuarto orden, con estrategias basadas en Redes Neuronales Artificiales y
modelos de lenguaje generativos (ChatGPT), promoviendo la reflexión crítica sobre las diferencias entre
soluciones manuales y automatizadas.

Keywords: Physics, Numerical methods, Neural networks, Learning.

Abstract. This work presents an integrated teaching experience between Physics and Mathematics, de-
veloped in collaboration with the Regional University Center of the North Coast (University of the Repu-
blic, Uruguay) and two Regional Teacher Training Centers. The proposal applies numerical methods to
the solution of physical problems involving linear and nonlinear differential equations. As a case study,
a damped mass–spring system with magnetic interaction is analyzed, combining principles of classical
mechanics and electromagnetism. The project integrates traditional methods, such as Euler and fourth-
order Runge–Kutta, with strategies based on Artificial Neural Networks and generative language models
(ChatGPT), fostering critical reflection on the differences between manually developed and automated
solutions.
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1. INTRODUCCIÓN

Con la llegada de la inteligencia artificial (IA), la formación en disciplinas como la Física
y la Matemática se enfrenta a un desafío crucial: conectar los fundamentos teóricos con las
herramientas tecnológicas de vanguardia que la sociedad actual demanda y que los estudiantes,
con justa razón, desean conocer. Si bien los Métodos Numéricos son parte de la enseñanza
universitaria y, en menor medida, del profesorado de física, las Redes Neuronales, que hoy en
día son un tema interesante en la sociedad, no han sido incorporadas en los planes de estudio.
Explorar la atención a esta situación resulta desafiante para ofrecer una formación actualizada,
pertinente y atractiva (Numa-Sanjuán et al., 2024; Di-Laccio et al., 2023, 2024).

Con el objetivo de responder a esta necesidad, se diseñó un plan de trabajo didáctico, fruto
de una colaboración entre docentes del Centro Universitario Regional - Litoral Norte (CENUR-
LN) de la Universidad de la República y docentes de dos Centros Regionales de Profesores
(CeRP). Este plan propone la enseñanza de los Métodos Numéricos y las Redes Neuronales de
manera integrada y significativa, de forma que se brinden varias posibilidades para el aprendi-
zaje. El método se apoya en un enfoque gradual. Se inicia con una situación tomada de la física:
la resolución de una ecuación diferencial lineal que describe oscilaciones subamortiguadas, un
caso simple, de solución conocida y ejemplar. A partir de allí, se aplican los mismos métodos a
una ecuación diferencial no lineal, más compleja, que surge al añadir al sistema de oscilaciones
amortiguadas el efecto de la fuerza magnética entre un imán (de neodimio cilíndrico) acoplado
a la masa oscilante y otro idéntico ubicado en el piso, cercano a este.

La experiencia se enriquece gracias a la sinergia entre las instituciones. Por un lado, los do-
centes universitarios aportan su experiencia en investigación y en la enseñanza teórica. Por otro,
los docentes de los CeRP contribuyen con una perspectiva pedagógica centrada en el estudiante
y sustentada en un enfoque competencial. Para lograr esto, se apoyan en estrategias activas y
en el uso sistemático de rúbricas, lo que permite a los estudiantes saber desde un inicio qué se
espera para su formación.

Esta articulación interinstitucional no solo posibilita el diseño de materiales didácticos con
un enfoque genuinamente interdisciplinario, sino que también potencia la innovación educativa.
La colaboración genera una retroalimentación continua entre diferentes niveles de enseñanza,
fortaleciendo el proceso para todos los involucrados.

El presente trabajo describe el diseño de este plan de trabajo, que integra saberes de Física,
Matemática y Computación. Asimismo, se justifica cómo la colaboración interinstitucional ha
sido crucial para la creación de un modelo pedagógico que puede inspirar a otras comunidades
académicas a articular esfuerzos para modernizar la enseñanza. Es importante señalar que, al
momento de la redacción, el plan se encuentra en su fase de diseño. La implementación con los
estudiantes y la posterior evaluación de sus resultados constituyen una fase prevista a futuro, la
cual permitirá profundizar en los beneficios y aprendizajes de la experiencia colaborativa.

2. FUNDAMENTOS TEÓRICOS

El estudio que aquí se presenta se centra en el análisis de un sistema mecánico clásico: el os-
cilador masa–resorte con amortiguamiento. Este sistema, ampliamente abordado en la literatura
de la física, constituye un punto de partida adecuado para la introducción de métodos de reso-
lución de ecuaciones diferenciales debido a su carácter didáctico y a la existencia de soluciones
analíticas conocidas y de relativa sencillez en su obtención.

A partir de este escenario inicial, se avanza hacia un modelo más complejo mediante la
incorporación de una fuerza magnética que interactúa con la masa oscilante. Este agregado
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transforma el problema en un sistema no lineal, cuyo abordaje sugiere la aplicación de técnicas
numéricas, que son las que queremos abordar, y ofrece un marco enriquecido para la exploración
y comparación de distintos métodos de resolución.

En este contexto, se utilizarán los métodos de Euler y Runge–Kutta como aproximaciones
numéricas clásicas, a los que se suma un enfoque contemporáneo basado en redes neuronales.
De esta manera, la propuesta combina herramientas tradicionales y modernas, favoreciendo
tanto la comprensión conceptual como la apertura hacia nuevas metodologías de análisis en
física computacional.

Asimismo, en la plataforma GitHub se ponen a disposición programaciones en MATLAB y
Python, desarrolladas con el apoyo de inteligencia artificial a partir de solicitudes específicas
(prompts en ChatGPT y Gemini IA) formuladas por el equipo docente, ver sección 3.

2.1. Ecuación diferencial lineal en las oscilaciones amortiguadas

El movimiento de un sistema masa-resorte vertical con amortiguamiento viscoso lineal pue-
de describirse mediante una ecuación diferencial de segundo orden. Si se elige la posición de
equilibrio como el origen (y = 0), se tiene (French, 1974; Di Laccio, 2024):

ÿ + γẏ + ω2

0y = 0 (1)

donde, ÿ es la aceleración de la masa, ẏ es su velocidad, γ = b
m

es el coeficiente de amortigua-

miento por unidad de masa y ω0 =
√

k
m

es la frecuencia natural no amortiguada.

Para el caso de oscilaciones amortiguadas (subamortiguadas), donde γ2 < 4ω2
0 , la solución

general para la posición es:

y(t) = Ae−
γ

2
t cos(ωdt+ ϕ), (2)

donde: A es la amplitud inicial, ϕ es el ángulo de fase y ωd =
√

ω2
0 −

(

γ

2

)2
es la frecuencia

angular amortiguada.
Esta ecuación resulta familiar para los estudiantes, pues ha sido objeto de estudio en cursos

anteriores. Por ello, constituye un punto de partida adecuado para ensayar métodos numéricos
en un contexto accesible, permitiendo concentrar la atención en las técnicas de resolución sin
introducir complejidades adicionales.

2.2. Ecuación diferencial no lineal en las oscilaciones amortiguadas

Una vez que los estudiantes han abordado los métodos numéricos en el caso lineal y pue-
den comparar directamente con la solución analítica, el modelo se extiende para incluir una
interacción magnética.

Para ello, se fija un imán cilíndrico de neodimio en la base y se coloca otro idéntico en la
masa oscilante, como se ve en la figura 1. La fuerza magnética resultante puede ser de atracción
o repulsión dependiendo de los polos enfrentados de los imanes y su intensidad depende de
la distancia que los separa (Castañer et al., 2006; González, 2017; Ángel F. García, 2025). La
intensidad de los campos generados por los imanes de neodimio es significativamente superior
a la del campo magnético terrestre, por lo que este último resulta despreciable en el análisis.

Para el análisis se supone que la fuerza magnética en dirección vertical se reduce a medida
que aumenta la distancia z entre los polos, siguiendo una ley de tipo 1/zn. En el caso de polos
del mismo nombre, dicha interacción produce una fuerza de repulsión.
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Figura 1: Sistema masa–resorte vertical con amortiguamiento y dos imanes que introducen una
interacción magnética.

Definimos L como la distancia desde la posición de equilibrio del imán suspendido (donde
y = 0) hasta el imán fijo en el suelo, mientras que y(t) representa el desplazamiento del imán
desde dicha posición de equilibrio, ver la figura 1. De este modo, la distancia entre ambos
imanes en un instante cualquiera es:

z = L− y.

Por lo tanto, la fuerza magnética de repulsión, Fm, resulta proporcional a:

Fm ∝
1

(L− y)n
.

La ecuación diferencial se expresa como (Jannah et al., 2023):

ÿ + γẏ + ω2

0y = −
C

(L− y)n
. (3)

Las constantes γ y ω2
0 mantienen su definición original, sustituyéndose la masa oscilante por

la masa total del objeto más el imán. El parámetro C incluye la masa, y el signo negativo indica
la repulsión entre polos iguales. En la simulación se adopta un exponente n = 4 para la fuerza
magnética.

La ecuación diferencial resultante es no lineal y no posee solución analítica, por lo que se
resuelve mediante métodos numéricos —como Euler o Runge–Kutta— o mediante aproxima-
ciones basadas en redes neuronales.

2.3. Solución Numérica de las Ecuaciones de Movimiento

Para resolver las ecuaciones diferenciales que describen el movimiento del sistema masa-
resorte, se emplean métodos numéricos. Estos métodos nos permiten encontrar una solución
aproximada en una serie de puntos discretos en el tiempo. Son una herramienta esencial para
simular la dinámica del sistema y analizar el comportamiento de las oscilaciones, especialmente
en casos no lineales.

Si bien la ecuación lineal (1) es útil como introducción didáctica y para familiarizarse con
los métodos numéricos, aquí nos enfocaremos en la resolución de la ecuación no lineal (3), ya
que su naturaleza compleja hace inviable una solución analítica cerrada.
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Para aplicar estos métodos, es necesario reducir la ecuación diferencial de segundo orden a
un sistema de ecuaciones de primer orden. Si definimos la posición como y1 = y y la velocidad
como y2 = ẏ, la ecuación de movimiento se transforma en el siguiente sistema de primer orden,
listo para ser resuelto numéricamente:

ẏ1 = y2

ẏ2 = −γy2 − ω2

0y1 +
1

m
Fm(y1)

2.3.1. Método de Euler

Para el problema de valor inicial (PVI):

ẏ(t) = f(t, y), y(t0) = y0 (4)

se busca aproximar y(t) en puntos discretos tn = t0+nh con paso h > 0. Integrando la ecuación
(4), se obtiene:

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t)) dt. (5)

Aproximando la integral mediante una regla del rectángulo, el método de Euler hacia adelante
(FE) resulta:

yn+1 = yn + hf(tn, yn), y0 = y(t0) (6)

Este esquema corresponde a una aproximación de diferencias finitas hacia adelante, con error

de truncamiento local O(h2) y error global O(h).

2.3.2. Métodos de Runge-Kutta

El método de Euler es simple de implementar, pero su precisión es baja. Para lograr resulta-
dos más precisos, se prefieren los métodos de mayor orden como los métodos de Runge-Kutta.
La idea detrás de estos métodos es mejorar la aproximación de la integral usando promedios
ponderados de varias pendientes dentro del intervalo.

2.3.3. Método de Heun (RK2).

Este esquema se basa en la regla del trapecio para aproximar la integral. La estrategia con-
siste en un paso predictor para estimar el siguiente valor y un paso corrector para refinar la
aproximación:

y∗ = yn + hf(tn, yn),

yn+1 = yn +
h
2
[f(tn, yn) + f(tn+1, y

∗)] .
(7)

En este caso, el error local de truncamiento es de orden O(h3), mientras que el error global es
de orden O(h2).

2.3.4. Método de Runge-Kutta de cuarto orden (RK4).

Para mejorar aún más la precisión, generalmente se utiliza el método de cuarto orden, ya
que su costo computacional es razonable (cuatro evaluaciones de la función f por paso) y su
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precisión es superior. El método consiste en calcular:

k1 = f(tn, yn),

k2 = f
(

tn +
h
2
, yn +

h
2
k1
)

,

k3 = f
(

tn +
h
2
, yn +

h
2
k2
)

,

k4 = f(tn + h, yn + hk3) ,

(8)

y luego combinar estos valores como

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4) . (9)

Aquí el error local de truncamiento es de orden O(h5) y el error global es de orden O(h4), lo
que explica su amplio uso en la práctica. No obstante, más allá de estos métodos clásicos de
integración, en los últimos años se han desarrollado enfoques alternativos, como el uso de redes
neuronales, capaces de aproximar soluciones a ecuaciones diferenciales de manera flexible y
eficiente.

2.4. Redes Neuronales para la Solución de Ecuaciones Diferenciales

Si bien los métodos numéricos clásicos descritos en 2.3.1 a 2.3.4 son herramientas adecuadas
para resolver ecuaciones diferenciales, un enfoque alternativo es el uso de Redes Neuronales
(RN). Estas redes, inspiradas en la estructura del cerebro, son capaces de .aprender 2aproximar
funciones complejas, lo que las hace candidatas ideales para encontrar soluciones a ecuaciones
como la que describe el movimiento del sistema masa–resorte con interacción magnética.

La idea central es entrenar una red neuronal para que «aprenda» la función de solución
y(t) de la ecuación diferencial (Navarro et al., 2023). Para ello, se formula un problema de
optimización en el que se minimiza la diferencia entre la ecuación diferencial y la solución
propuesta por la red neuronal. Es decir, se busca que la red neuronal cumpla con la ecuación en
todos los puntos del dominio de interés. El proceso puede resumirse en los siguientes pasos:

◦ Se diseña una red neuronal con una capa de entrada (para el tiempo t) y una capa de salida
(para la solución y(t)). Las capas intermedias, o capas ocultas, permiten a la red aprender
relaciones no lineales complejas.

◦ Se define una función de costo que penaliza el error de la red si su salida no satisface la
ecuación diferencial. Por ejemplo, para la ecuación

ÿ + γẏ + ω2

0y = 1

m
Fm(y), (10)

la red produce una aproximación yθ(t), donde θ denota los parámetros de la red (pesos y
sesgos). La función de costo puede escribirse como:

L(θ) =
1

N

N
∑

i=1

(

ÿθ(ti) + γẏθ(ti) + ω2

0yθ(ti)−
1

m
Fm(yθ(ti))

)2

+ λLCI, (11)

donde LCI es un término adicional que penaliza el incumplimiento de las condiciones
iniciales, y λ es un parámetro que regula la importancia de este término.
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◦ Se utiliza un algoritmo de optimización (como el descenso de gradiente) para ajustar los
parámetros θ, minimizando la función de costo. De esta forma, la red se adapta para
aproximar la función de solución que satisface la ecuación diferencial y las condiciones
iniciales.

El uso de redes neuronales en este contexto abre la puerta a la exploración de la resolución
de ecuaciones en las que los parámetros del sistema (como la fuerza magnética) no se conocen
con precisión. En este caso, la red neuronal podría usarse para inferir la forma de la fuerza
magnética a partir de datos experimentales, ofreciendo una poderosa herramienta para el análisis
de sistemas dinámicos no lineales.

3. IA EN LA IMPLEMENTACIÓN DE MÉTODOS NUMÉRICOS

La incorporación de IA en la resolución de ecuaciones diferenciales no lineales ofrece una
oportunidad para vincular fundamentos teóricos con herramientas tecnológicas avanzadas. En
este proyecto se plantea el uso de modelos de lenguaje generativos, como ChatGPT (OpenAI,
2025) y Gemini IA (Google DeepMind, 2025), como asistentes para la generación automática
de códigos.

En particular, los ejemplos se presentan en MATLAB (MathWorks, 2015) y Python (Python
Software Foundation, 2025), por ser herramientas de uso común en el ámbito académico. No
obstante, los estudiantes pueden emplear otras plataformas de programación con las que estén
familiarizados, ya que los principios de implementación son análogos.

Los códigos desarrollados con el apoyo de inteligencia artificial se encuentran disponibles
en: https://github.com/mago876/ecdif_pinn. Se ofrecen únicamente como ejemplo, a modo de
una posible solución que podrían elaborar los estudiantes familiarizados con estas tecnologías.

Es fundamental que los códigos sean revisados críticamente, contrastándolos con los fun-
damentos teóricos y los conceptos matemáticos abordados en la temática, así como usados
éticamente (Gallent Torres et al., 2023). Esta revisión fomenta la capacidad de análisis, la ve-
rificación de resultados y la identificación de limitaciones o errores que pueden surgir del uso
automatizado de la IA.

En este sentido, la utilización de herramientas de IA no sólo contribuye a desarrollar compe-
tencias en programación y simulación, sino que también promueve una actitud reflexiva sobre la
validez y aplicabilidad de las soluciones generadas, fortaleciendo la integración entre la teoría
y la práctica computacional.

4. METODOLOGÍA Y DISEÑO DE LA SECUENCIA DIDÁCTICA

Este proyecto presenta una secuencia didáctica interdisciplinaria que integra Física, Matemá-
tica y Tecnologías Digitales en la enseñanza superior. Está dirigida a estudiantes del segundo
año del Ciclo Inicial en Matemática (CIM) del CENUR Litoral Norte y adaptada para el cuar-
to año del Profesorado de Física en los CeRP, en unidades como Laboratorios de Fenómenos
Clásicos o Proyecto de Física. La formación previa en asignaturas vinculadas a tecnologías y
modelización computacional les brinda las competencias necesarias para aplicar herramientas
numéricas e inteligencia artificial en la resolución de problemas físicos.

Su desarrollo exige la coordinación entre docentes de distintas regiones del país, centrada en
el diseño teórico, didáctico y pedagógico. Dada la dispersión geográfica, el trabajo virtual será
esencial para consolidar una comunidad interinstitucional de aprendizaje (Gairín, 2006).

El plan de enseñanza se estructura en una secuencia de seis semanas, con un total de 24 horas
de trabajo sincrónico distribuido en dos sesiones semanales de dos horas. La progresión con-
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ceptual y metodológica se diseñó para que los estudiantes inicien con los fundamentos teóricos
(física y matemática) y avancen hacia la aplicación práctica de implementación de soluciones a
través de códigos y la reflexión crítica sobre los mismos. Para guiar el proceso y la producción
final de los estudiantes, se generará una rúbrica de evaluación, con el objetivo de transparentar
los criterios y orientar el trabajo hacia los resultados esperados. Las fases son las siguientes:
Fase 1 (Semanas 1–2): Introducción a las ecuaciones diferenciales de movimiento y al método
de Euler aplicado al caso físico, destacando la lógica iterativa y la aproximación numérica.
Fase 2 (Semanas 3–4): Estudio de los métodos Runge–Kutta (RK2 y RK4) y comparación de
su precisión y eficiencia frente al método de Euler.
Fase 3 (Semanas 5–6): Aplicación de redes neuronales a ecuaciones diferenciales y análisis
crítico de enfoques manuales, numéricos e IA. Cierre con infografía y exposición oral.

4.1. Roles y Funciones del Equipo Interdisciplinario

El diseño y la creación del plan de aula se basan en un modelo de colaboración disciplinar,
donde cada docente asume un rol específico, como se detalla en la Tabla 2.

Docente Funciones Material de soporte
Física

– Selección y contextualización de
problemas físicos.

– Explicación de fundamentos y
validación de modelos.

– Relación entre teoría, resultados
numéricos e IA.

– Guías teóricas.
– Problemas contextualizados para

aplicar métodos numéricos y redes
neuronales.

Matemática
– Fundamentación de métodos

numéricos (Euler, RK2, RK4).
– Formalización de ecuaciones

diferenciales.
– Análisis de errores y precisión.

– Material teórico y ejercicios con
soluciones elaborados por los
estudiantes.

Tecnologías
Digitales

– Aplicación de redes neuronales a
ecuaciones diferenciales.

– Guía práctica en MATLAB y Python.
– Uso de IA (ChatGPT, Gemini).

– Ejemplos resueltos y comparaciones
de resultados.

Formadores de
profesores

– Diseño de la secuencia didáctica.
– Elaboración de rúbricas y

coordinación del trabajo
colaborativo.

– Plan de aula interdisciplinario y
rúbricas.

– Guía metodológica y coevaluación
del equipo docente.

Tabla 2: Roles, funciones y productos realizados por el equipo docente.

Este enfoque busca asegurar la coherencia y la rigurosidad en cada componente de la pro-
puesta, desde la contextualización de los problemas físicos hasta la formalización de los méto-
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dos matemáticos y la aplicación de tecnologías.
La propuesta apunta al desarrollo de competencias profesionales en coherencia con el plan de

formación docente 2023 (CFE, 2023). Se orienta al aprendizaje permanente, la comunicación
en distintos lenguajes y la construcción de comunidades de aprendizaje. Desde un enfoque
competencial (Valle y Manso, 2013), busca que los estudiantes comprendan los fundamentos de
los métodos numéricos y reflexionen sobre su aplicación en la resolución de problemas físicos,
integrando las dimensiones cognitiva e instrumental.

5. SOBRE LA COLABORACIÓN ENTRE INSTITUCIONES Y SABERES

La experiencia desarrollada con esta propuesta interdisciplinaria ha evidenciado múltiples
beneficios para los docentes involucrados. La planificación y diseño de actividades que integran
Física, Matemática y Computación ha favorecido un enfoque más holístico de los problemas,
al mismo tiempo que ha estimulado la creatividad pedagógica mediante la construcción colabo-
rativa de materiales innovadores. Los docentes destacan también la oportunidad de salir de su
zona de confort profesional, trabajando junto a colegas de distintas formaciones y perfiles, lo
que ha promovido el intercambio de perspectivas y el enriquecimiento de la reflexión pedagó-
gica. La interacción interinstitucional ha generado un espacio de discusión valioso, en el que se
comparten enfoques diversos y se construyen estrategias didácticas de manera conjunta.

En un futuro cercano se prevé la implementación de la propuesta en el aula, lo que permitirá
evaluar los resultados de su primera aplicación y realizar los ajustes necesarios para potenciar
el aprendizaje de los estudiantes. Esta retroalimentación contribuirá a optimizar contenidos,
secuencias de enseñanza y recursos didácticos, consolidando así la formación docente continua
y fortaleciendo las competencias profesionales de quienes participan en el proyecto.

La experiencia muestra que la colaboración interinstitucional fortalece la enseñanza de Física
y Matemática. La integración de métodos numéricos y redes neuronales favorece un aprendizaje
significativo, mientras que el uso de IA y recursos digitales aporta una oportunidad innovadora
sujeta a análisis crítico.
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