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Resumen. La creciente demanda tecnológica resalta la importancia de una sólida formación en matemá-
tica aplicada dentro de las carreras de ingeniería. En particular, la enseñanza de ecuaciones diferenciales
y métodos numéricos en la carrera de Ingeniería Mecatrónica resulta fundamental, dado que brinda he-
rramientas clave para abordar problemas complejos vinculados al control de sistemas automatizados y a
la optimización de dispositivos mecatrónicos. En este trabajo se presenta una propuesta de enseñanza-
aprendizaje basada en proyectos, en la que el abordaje de un problema real permite introducir y desa-
rrollar los conceptos matemáticos necesarios para su modelado y resolución. Como parte del proceso, se
utiliza software de cálculo matricial tipo GNU Octave para implementar esquemas de diferencias finitas,
favoreciendo la conexión entre teoría y práctica. La incorporación de herramientas computacionales y
métodos numéricos fomenta el desarrollo de habilidades aplicadas, tales como la simulación y el ajuste
de modelos en tiempo real, fortaleciendo la formación integral del estudiante de ingeniería.

Keywords: Finite differences, Project-based learning, Applied mathematics.

Abstract. The growing demand for technological advancement highlights the increasing importance
of a solid foundation in applied mathematics within engineering education. In particular, the teaching of
differential equations and numerical methods in the Mechatronics Engineering programme plays a key
role, as it provides essential tools for addressing complex problems related to the control of automated
systems and the optimization of mechatronic devices. This work presents a project-based teaching and
learning approach, in which real-world problems serve as the starting point for introducing and develo-
ping the mathematical concepts required for modelling and solving the system. As part of the process,
matrix-oriented computing software such as GNU Octave is employed to implement finite difference
methods, encouraging the integration of theoretical knowledge with practical applications. The incor-
poration of numerical techniques and computational tools promotes the development of applied skills,
such as real-time model simulation and calibration, thereby strengthening the comprehensive training of
engineering students.
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1. INTRODUCCIÓN

En la formación en Ingeniería, la enseñanza de ecuaciones diferenciales y métodos numé-
ricos adquiere una relevancia significativa. Esto se debe a que permiten modelar fenómenos
dinámicos esenciales para entender y diseñar procesos reales, desde el control de sistemas au-
tomatizados hasta fenómenos cotidianos y laborales. En este sentido, el modelado matemático
es un proceso que vincula las matemáticas con los problemas del mundo real y que puede apli-
carse para aumentar la motivación, desarrollar competencias cognitivas y mejorar la capacidad
de transferir conocimientos matemáticos a otras áreas de la ciencia, como las ingenierías (Re-
zaei y Asghary, 2024). De este modo, una propuesta educativa basada en proyectos reales no
solo fortalece el entendimiento académico, sino que también permite transferir esas habilidades
al ámbito profesional y cotidiano (Rodríguez-Sanchez et al., 2024). Trabajar con simulaciones
prácticas, como implementar esquemas numéricos en GNU Octave, conecta directamente la
teoría matemático-numérica con la solución de problemas concretos, promoviendo una forma-
ción verdaderamente integral. Desde el punto de vista pedagógico, una revisión bibliográfica
amplia demuestra cómo la enseñanza de ecuaciones diferenciales ha evolucionado hacia mé-
todos activos que incorporan enfoques cualitativos, modelado, implementación de tecnologías
y aprendizaje activo, destacando la participación del estudiante como factor clave (Lozada et
al., 2021; Rochina Chileno et al., 2020). En esta línea, Furman (2021) enfatiza la importancia
de “enseñar distinto”, priorizando contenidos esenciales y diseñando experiencias que promue-
van el pensamiento profundo mediante preguntas desafiantes y rutinas de pensamiento, aportes
que se articulan con la propuesta presentada en este trabajo. En este marco, se desarrolló una
experiencia de aula centrada en el modelado de la difusión de calor en un triac, un dispositivo
electrónico de uso extendido en aplicaciones de control de potencia. El problema fue abordado
a partir de la ecuación de difusión del calor, cuya resolución aproximada requirió la aplica-
ción de métodos numéricos en derivadas parciales, generando una oportunidad para integrar
conocimientos matemáticos, físicos e ingenieriles. La propuesta no solo permitió ejercitar la
formulación y análisis de esquemas numéricos, sino también discutir el comportamiento térmi-
co de un componente real, vinculando el aprendizaje con situaciones relevantes de la práctica
profesional. En este sentido, el trabajo se enmarca en el enfoque por competencias promovido
por el CONFEDI (Consejo Federal de Decanos de Ingeniería) en los estándares de formación
en ingeniería en Argentina, al favorecer la articulación de saberes teóricos y prácticos, el desa-
rrollo de habilidades de resolución de problemas y la preparación del estudiante para escenarios
profesionales auténticos. El objetivo del presente artículo es compartir la experiencia del traba-
jo basado en proyectos realizado en el ciclo 2024, en el curso de Ecuaciones Diferenciales y

Cálculo Numérico de la Facultad de Ciencias de la Alimentación. La propuesta se sustentó en
la Pedagogía de la Problematización, reconociendo al estudiante como protagonista activo del
proceso de aprendizaje y promoviendo la reflexión crítica sobre la práctica (Rochina Chileno et
al., 2020). En particular, se integraron los contenidos curriculares de la asignatura con la resolu-
ción de un problema aplicado —la difusión de calor en un triac— mediante la implementación
de esquemas numéricos en GNU Octave. De esta manera, se buscó no solo afianzar los apren-
dizajes teórico-prácticos, sino también fortalecer competencias profesionales vinculadas a la
modelización, el análisis situado y la transferencia crítica de saberes hacia la práctica ingenie-
ril. A continuación, se describe la metodología empleada para llevar adelante esta experiencia
de enseñanza-aprendizaje, detallando el marco pedagógico adoptado, las actividades realizadas
y los recursos utilizados.
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2. DESCRIPCIÓN DE LA ASIGNATURA

La asignatura Ecuaciones Diferenciales y Cálculo Numérico forma parte del ciclo básico de
la carrera de Ingeniería Mecatrónica y comprende contenidos de números complejos, ecuacio-
nes en derivadas parciales, cálculo numérico y series de Fourier. Su desarrollo ocupa un rol
central en la formación del ingeniero, dado que proporciona fundamentos y herramientas para
la modelización y resolución de problemas propios de la disciplina. Se dicta en los módulos 5
y 6 de la carrera (primer y segundo cuatrimestre del tercer año) y se articula con los contenidos
de las matemáticas previas, asegurando una base conceptual sólida que habilita al estudiante a
participar en la búsqueda de soluciones a problemas concretos. De esta manera, se fomenta la
transferencia y aplicación de saberes en diversos contextos académicos, profesionales y tecno-
lógicos.

La cátedra depende del Departamento de Matemáticas, ámbito en el que se promueve un
proceso continuo de revisión y actualización de contenidos y metodologías, a fin de garantizar
la pertinencia de la asignatura frente a las demandas actuales del ejercicio profesional de la in-
geniería.

El objetivo general de la materia es que los estudiantes adquieran una base sólida en Cálcu-
lo Avanzado y Análisis Numérico mediante un enfoque moderno que destaque la interrelación
entre el Análisis Matemático y la Geometría a través del Álgebra Lineal. Se contempla tanto la
aproximación lineal como la no lineal, junto con sus aplicaciones clásicas. Asimismo, se busca
que los alumnos analicen y comprendan la naturaleza de los métodos numéricos, desarrollen
competencias analíticas y metodológicas, y logren resolver con solvencia problemas caracterís-
ticos de la ingeniería.
En concordancia con los lineamientos establecidos por el CONFEDI, la asignatura promueve el
desarrollo de competencias que integran el conocimiento matemático con la capacidad de apli-
cación práctica en contextos ingenieriles reales, contribuyendo a la formación de profesionales
capaces de afrontar los desafíos tecnológicos contemporáneos.

3. METODOLOGÍA

La metodología de enseñanza adoptada se sustentó en la Pedagogía de la Problematización,
un enfoque que sitúa al estudiante como protagonista activo del proceso de aprendizaje. Este
paradigma enfatiza la necesidad de vincular el conocimiento con la realidad concreta del estu-
diante, promoviendo una actitud crítica frente al saber establecido y favoreciendo la reflexión
sobre la práctica como eje central de la construcción del conocimiento (Rochina Chileno et al.,
2020).

De acuerdo con Dai et al. (2024), enfoques activos como el aprendizaje basado en proyectos
favorecen la formación de profesionales reflexivos, con capacidad de interpretar críticamente la
realidad y comprometidos con su transformación. En esta misma línea, Behrens (2011) sostiene
que se trata de una propuesta coherente con las demandas emergentes de la educación superior,
que requieren metodologías activas, contextualizadas y centradas en el sujeto que aprende.

Su aplicación en carreras de ingeniería resulta especialmente pertinente, ya que fomenta
competencias clave como la toma de decisiones, el análisis situado y la transferencia crítica de
saberes hacia la práctica profesional. En este contexto, la experiencia presentada se desarrolló
en el ciclo 2024 e integró los contenidos de la asignatura Ecuaciones Diferenciales y Cálculo
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Numérico con la resolución de un problema aplicado al campo de la Ingeniería Mecatrónica: el
modelado de la difusión de calor en un triac.

La actividad consistió en la formulación del problema, el análisis de la ecuación diferencial
asociada y la implementación de esquemas numéricos en el entorno computacional GNU Oc-
tave. El objetivo fue afianzar los aprendizajes teórico-prácticos y, al mismo tiempo, favorecer
el desarrollo de competencias profesionales vinculadas a la modelización matemática, el uso de
herramientas tecnológicas y la interpretación crítica de resultados en contextos de aplicación
real.

4. TRABAJO INTEGRADOR

Para el desarrollo de la experiencia se tomó como referencia un triac comercial, dispositivo
semiconductor ampliamente utilizado en aplicaciones de control de potencia en corriente alter-
na. En la Figura 1 se presenta, en conjunto, el componente real y una geometría simplificada en
3D, elaborada para el proceso de modelización numérica del análisis térmico.

Figura 1: Triac comercial de referencia y geometría simplificada en 3D utilizada para el análisis
térmico.

4.1. Ecuación de difusión de calor

El fenómeno se modeló mediante la ecuación de difusión del calor en régimen transitorio,
que describe la variación temporal de la temperatura en función de la conducción térmica en el
material:

∂T

∂t
= α

(

∂2T

∂x2
+

∂2T

∂y2

)

, (1)

donde T (x, y, t) representa la temperatura y α = k/(ρcp) es la difusividad térmica del material.
El problema se plantea en una placa de aluminio de dimensiones 6mm×10mm, con espesor

b = 1mm = 10−3 m. Dado que el espesor es pequeño en comparación con las dimensiones
laterales, se justifica aproximar el problema mediante un modelo bidimensional, considerando
únicamente la conducción en el plano de la placa. La geometría incluye un orificio circular
centrado en (3, 5)mm y de radio R = 1,5mm, de modo que el dominio bidimensional queda
definido por:

Ω = [0, 6]× [0, 10] \ {(x, y) : (x− 3)2 + (y − 5)2 < R2}. (2)

Las propiedades del aluminio son:

k = 164 W/(mK), ρ = 2700 kg/m3, cp = 900 J/(kgK),
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y la difusividad térmica se calcula como:

α =
k

ρcp
≈ 6,76× 10−5 m2/s.

4.2. Condiciones de contorno

Las condiciones de contorno del problema se clasifican de acuerdo con los tres tipos clásicos:
Dirichlet, Neumann y Robin. Cada una representa una forma distinta de modelar la interacción
del sistema con su entorno:

Condición de Dirichlet: se prescribe el valor de la temperatura en un borde del dominio.
En este caso, sobre el lado inferior de la placa de longitud 6mm, se fija:

T = TD = 50◦C = 323,15 K.

Condición de Neumann: se especifica el flujo de calor a través de la frontera. En parti-
cular, sobre el borde del orificio central se aplica:

−k b ∂nT = qn en Γorificio
N ,

donde qn representa un flujo impuesto. Si se considera que el orificio está aislado, se toma
qn = 0.

Condición de Robin (convección): combina información de Dirichlet y Neumann, re-
presentando un intercambio de calor proporcional a la diferencia de temperaturas entre la
superficie y el ambiente. Sobre el resto de los bordes externos se aplica:

−k b ∂nT = h (T − Ta) en ΓR,

donde h es el coeficiente de transferencia convectiva y Ta la temperatura del aire circun-
dante.

De este modo, el contorno se descompone en tres subconjuntos disjuntos:

∂Ω = ΓD ∪ ΓN ∪ ΓR, ΓD ∩ ΓN = ΓD ∩ ΓR = ΓN ∩ ΓR = ∅,

lo que permite una formulación precisa del problema de difusión de calor, integrando todas las
condiciones físicas relevantes del sistema. Con fines didácticos, se aplicaron simultáneamente
los tres tipos de condiciones de contorno, de manera que los estudiantes pudieran comparar
directamente sus efectos y comprender las diferencias en su implementación numérica.

4.3. Implementación numérica de los alumnos

La resolución del problema se realizó mediante el método de diferencias finitas, empleando
tanto esquemas explícitos como implícitos, según la conveniencia de cada caso (Crank y Ni-
colson, 1996; LeVeque, 2007). Los alumnos implementaron los algoritmos en GNU Octave,
utilizando directamente la discretización y los esquemas trabajados en clase.

Para el método explícito de Forward Euler, la actualización de la temperatura en cada nodo
(i, j) se realiza mediante (LeVeque, 2007):
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T n+1

i,j = T n
i,j +∆t α

[

T n
i+1,j − 2T n

i,j + T n
i−1,j

∆x2
+

T n
i,j+1 − 2T n

i,j + T n
i,j−1

∆y2

]

, (3)

donde T n+1

i,j representa la temperatura futura calculada a partir del estado anterior T n
i,j .

Como alternativa implícita, se presentó el método de Crank–Nicolson, ampliamente utilizado
por su estabilidad incondicional y su mayor precisión temporal (Crank y Nicolson, 1996). En
este esquema, el valor futuro se obtiene promediando las discretizaciones espacial-temporales
en los niveles n y n+ 1:

T n+1

i,j − T n
i,j

∆t
= α

{

1

2

[

T n
i+1,j − 2T n

i,j + T n
i−1,j

∆x2
+

T n
i,j+1 − 2T n

i,j + T n
i,j−1

∆y2

]

+
1

2

[

T n+1

i+1,j − 2T n+1

i,j + T n+1

i−1,j

∆x2
+

T n+1

i,j+1 − 2T n+1

i,j + T n+1

i,j−1

∆y2

]}

. (4)

La implementación de este método requirió la resolución de un sistema lineal en cada paso
de tiempo, lo que permitió a los estudiantes comprender las diferencias prácticas entre métodos
explícitos e implícitos y analizar los compromisos entre costo computacional y estabilidad.

En lugar de graficar superficies tridimensionales, se optó por representar la distribución de
temperatura mediante mapas de colores, lo que permite visualizar de manera clara las regiones
más calientes y frías de la placa y analizar el efecto de diferentes tamaños de paso (∆x = ∆y)
sobre la precisión y la estabilidad del método.

El método explícito es condicionalmente estable (Quarteroni y Saleri, 2007); la estabilidad
depende de la relación

α∆t

h2
≤ 0,25,

donde h = ∆x = ∆y. Esta restricción, conocida como condición de Courant–Friedrichs–Lewy
(CFL), fue discutida y aplicada por los alumnos al modificar el tamaño de paso, observando
cómo los mapas de colores reflejan la aparición de errores cuando la condición de estabilidad
no se cumple.

Desde el punto de vista pedagógico, la actividad permitió a los alumnos:

Aplicar conceptos teóricos a un problema práctico y visual.

Analizar el impacto de la discretización en la solución numérica.

Comprender la relación entre estabilidad, tamaño de paso y comportamiento del método
explícito.

Diferenciar entre esquemas explícitos e implícitos en términos de estabilidad y costo
computacional.

Desarrollar competencias de programación y visualización de resultados en GNU Octa-
ve.

5. RESULTADOS Y DISCUSIÓN

En esta sección se presentan los resultados obtenidos mediante la implementación numéri-
ca por parte de un grupo de alumnos, así como el análisis de su aprendizaje y competencias
desarrolladas.
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5.1. Distribución de temperaturas

Se generaron mapas de colores que representan la distribución de temperatura en la placa
para tres discretizaciones diferentes: 13 × 21, 25 × 41 y 49 × 81 nodos. Esta representación
permite visualizar de manera clara las regiones más calientes y frías de la placa y analizar el
efecto de la densidad de nodos sobre la precisión y estabilidad del método.

(a) Discretización 13 × 21 (b) Discretización 25 × 41 (c) Discretización 49 × 81

Figura 2: Distribución de temperatura en la placa para distintas mallas. Se observa cómo au-
menta la precisión al refinar la discretización y cómo se mantiene la estabilidad del método
explícito bajo la condición CFL.

Los resultados muestran que al aumentar la densidad de nodos, los gradientes de temperatura
se representan con mayor precisión y se mantiene la estabilidad de los esquemas numéricos. La
discretización más gruesa suaviza los gradientes y puede presentar errores numéricos locales.

5.2. Influencia de la resolución espacial

Los resultados muestran que, al incrementar la densidad de nodos, la representación de los
gradientes de temperatura mejora significativamente, evidenciando una mayor fidelidad en la
simulación del fenómeno térmico. La discretización más gruesa (13 × 21) tiende a suavizar
los gradientes y puede inducir errores numéricos locales en regiones con variaciones pronun-
ciadas de temperatura. La malla intermedia (25 × 41) proporciona una mejor aproximación de
los gradientes, mientras que la más fina (49 × 81) permite capturar de manera más precisa la
distribución de temperatura en toda la placa.

Es relevante destacar que, en todos los casos considerados, la condición CFL se cumple,
garantizando la estabilidad del método explícito mientras se logra un refinamiento de malla que
incrementa la precisión de la solución.

5.3. Análisis del aprendizaje del grupo de alumnos

La actividad permitió a los alumnos:

Comprender conceptualmente el fenómeno de difusión de calor y la importancia de las
condiciones de contorno.

Desarrollar habilidades tecnológicas, implementando algoritmos en GNU Octave y ge-
nerando visualizaciones mediante mapas de colores.

Fortalecer competencias de resolución de problemas, análisis crítico y trabajo con herra-
mientas computacionales.
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5.4. Percepción de los estudiantes

Se registraron comentarios y observaciones cualitativas durante la actividad. Los estudiantes
destacaron la utilidad de los mapas de colores para comprender la influencia de la discretización
y la estabilidad del método, y manifestaron mayor confianza al aplicar conceptos teóricos en un
contexto práctico. Esta experiencia también fomentó el aprendizaje colaborativo y la discusión
crítica sobre resultados y métodos numéricos.

6. CONCLUSIONES

El presente trabajo presenta una estrategia didáctica para la enseñanza-aprendizaje de méto-
dos numéricos, orientada a su aplicación en la resolución de problemas concretos de ingeniería
mecatrónica. La metodología implementada tuvo como objetivo central favorecer un aprendi-
zaje significativo y promover una comprensión profunda de los contenidos, estableciendo una
vinculación directa entre la teoría matemática y los problemas prácticos del ámbito profesional,
así como la comparación crítica de los resultados numéricos con observaciones experimentales.

Asimismo, la propuesta permitió la integración de herramientas computacionales, específi-
camente GNU Octave, y fortaleció la colaboración y el trabajo en equipo entre los estudiantes.
La implementación de mapas de colores para diferentes discretizaciones espaciales facilitó la
visualización y análisis de los resultados, permitiendo apreciar la influencia de la resolución de
la malla sobre la precisión y estabilidad de los esquemas numéricos.

En este contexto, la experiencia contribuyó no solo a la adquisición de conocimientos técni-
cos específicos en métodos numéricos y simulación, sino también al desarrollo de competencias
transversales fundamentales para la formación integral del ingeniero, tales como pensamiento
crítico, resolución de problemas complejos, comunicación técnica de resultados y apropiación
de herramientas tecnológicas avanzadas.
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