
ESTUDIO COMPARATIVO DE ESTRATEGIAS DE BACKTRACKING
PARA MODELOS VARIACIONALES TIPO PHASE-FIELD DE

FRACTURA CUASI–FRAGIL

A COMPARATIVE STUDY OF BACKTRACKING STRATEGIES FOR
VARIATIONAL PHASE-FIELD QUASI–BRITTLE FRACTURE MODELS

Mariela Luegea, Agustina Campraa y Antonio Orlandob

aCONICET, Instituto de Estructuras ‘Ing. Arturo M. Guzmán’, Universidad Nacional de Tucumán,

{mluege,acampra}@herrera.unt.edu.ar

bCONICET, Departamento de Bioingeniería, FACET, Universidad Nacional de Tucumán,

aorlando@herrera.unt.edu.ar

Palabras clave: Modelo variacional de fractura; Modelo de daño de tipo gradiente; Cotas

energeticas; Backtracking.

Resumen. En este artículo se comparan dos estrategias de backtracking diseñadas para mejorar la cali-

dad de las soluciones numéricas de un modelo variacional de tipo phase-field para fractura cuasi-frágil.

La primera estrategia corresponde al método clásico de reinicialización propuesto por Bourdin (2007),

cuya eficacia ha sido validada en diversos escenarios, y que asume la aplicación exclusiva de condiciones

de contorno de tipo Dirichlet con variación monótona. La segunda estrategia relaja esta hipótesis y se

basa en propiedades del punto de mínimo global, expresadas mediante dos cotas energéticas. A partir de

un problema de referencia, se comparan ambas estrategias. Dado que no es posible determinar a priori

cuál de ellas ofrece mejores resultados en general, se propone un algoritmo híbrido que combina ambas

de manera adaptativa, con el objetivo de aprovechar las ventajas de cada una según las características del

problema considerado.

Keywords: Variational model of fracture; Gradient–damege model; Energetic bounds; Backtracking.

Abstract. This article compares two backtracking strategies designed to improve the quality of numeri-

cal solutions of a variational phase-field model for quasi-brittle fracture. The first strategy corresponds to

the classical reinitialization method proposed by Bourdin (2007), whose effectiveness has been validated

in various scenarios, and which assumes the exclusive application of Dirichlet-type boundary conditions

with monotonic variation. The second strategy relaxes this assumption and is based on properties of the

global minimizer, expressed in the form of two energy bounds. Based on a benchmark problem, both

strategies are compared. Since it is not possible to determine a priori which of them generally provides

better results, a hybrid algorithm is proposed that adaptively combines both strategies, aiming to leverage

the advantages of each depending on the characteristics of the problem under consideration.
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1. INTRODUCCIÓN

La simulación numérica de la fractura en materiales cuasi-frágiles, tales como cerámicas,

placas de mármol o estructuras de hormigón, representa un desafío central en la mecánica

computacional. Bajo condiciones isotérmicas y cargas mecánicas, estos materiales desarrollan

mecanismos de daño que requieren modelos capaces de capturar la nucleación, propagación y

coalescencia de grietas de forma precisa y eficiente. Una de las aproximaciones más robustas

para modelar este fenómeno es la formulación variacional de la fractura propuesta por Franc-

fort y Marigo (1998); Bourdin et al. (2008), la cual reinterpreta el criterio de Griffith como una

condición de optimalidad basada en la minimización global de la energía total del sistema. Es-

ta energía se define como la suma de la energía elástica almacenada en el cuerpo y la energía

disipada en la generación de nuevas superficies de fractura.

Dicho enfoque se enmarca en la teoría de los problemas de discontinuidades libres, cuyo

tratamiento formal requiere el uso del espacio funcional de funciones SBV (Special functions

of Bounded Variation) (Ambrosio et al., 2000). Sin embargo, el tratamiento numérico directo

de funciones SBV es impracticable en la práctica. Un resultado clave en este contexto es que

los cuasi-mínimos globales de versiones regularizadas de estos funcionales convergen, en un

sentido preciso, al mínimo global del funcional con discontinuidades libres. Esta regularización

permite formular el problema en espacios de Sobolev, que son compatibles con métodos de

elementos finitos.

A pesar del sólido marco teórico que respalda la formulación variacional y sus versiones

regularizadas, la obtención numérica de soluciones que correspondan a puntos de cuasi-mínimo

global sigue siendo un reto no resuelto. En la práctica, los algoritmos existentes (Miehe et al.,

2010; Wu et al., 2020) suelen centrarse en resolver las condiciones de primer orden de optima-

lidad o las condiciones de Kuhn-Tucker. No obstante, debido a la no convexidad del problema,

estas condiciones son necesarias pero no suficientes para garantizar que la solución obtenida

corresponde a un mínimo global. Como resultado, la validación de las soluciones numéricas

se basa comúnmente en inspecciones visuales o comparaciones cualitativas con resultados ex-

perimentales, careciendo de un criterio riguroso que asegure la consistencia con el principio

variacional que motiva el modelo.

En este trabajo se aborda esta limitación proponiendo una estrategia computacional que

mejora la confiabilidad de los esquemas de minimización alternada basados en el método de

Newton, sin recurrir a técnicas de optimización global, las cuales resultan computacionalmente

prohibidas debido a la alta dimensionalidad del problema. Se considera una familia de funcio-

nales regularizados que son separadamente convexos con respecto al desplazamiento u y al

campo de daño tipo phase-field β, el cual varía en el intervalo [0, 1]. A partir de esta formu-

lación, se deriva una desigualdad energética con cotas superior e inferior, la cual se satisface

únicamente en puntos de mínimo global. Esta desigualdad se introduce como un criterio adicio-

nal de optimalidad dentro de un algoritmo de backtracking, aumentando la robustez y precisión

de la solución.

Asimismo, se compara esta estrategia con el enfoque clásico de backtracking propuesto en

Bourdin (2007), el cual asume solo condiciones al contorno de tipo Dirichlet con variación de

tipo monótona. Dado que ninguna de las dos estrategias es universalmente superior, lo que moti-

va el desarrollo de un algoritmo híbrido que combina ambas de forma adaptativa, seleccionando

la más adecuada según el régimen de carga del problema.

Finalmente, se presenta un ejemplo numérico que ilustra la implementación y el desempeño

del algoritmo propuesto. Los resultados muestran una buena concordancia entre los patrones
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de fisura simulados y las observaciones experimentales, validando la efectividad y solidez del

enfoque desarrollado.

2. FORMULACIÓN VARIACIONAL REGULARIZADA

Sea Ω ⊂ R
m un conjunto abierto, acotado y simplemente conexo con m = 1, 2, 3 y contorno

∂Ω de tipo Lipschitz. Este dominio representa la configuración de referencia de un cuerpo

elástico-lineal libre de fisuras. Consideremos P = {t0 = 0 < t1 < . . . < tN = T}, una

partición del intervalo de tiempo [0, T ]. Denotamos por Γn ⊂ Ω el patrón de fisuras en el instante

tn. Se asume que este patrón es un conjunto rectificable de Ω de dimensión m − 1 (Ambrosio

et al., 2000). Además, Γn se identifica con la unión de los conjuntos de discontinuidades de tipo

salto de los desplazamientos ui (0 ≤ i ≤ n), es decir, Γn =
⋃n

i=0 Γi, donde Γi es el conjunto

de las discontinuidades de tipo salto de ui.

La formulación variacional del proceso mecánico de propagación y formación de fracturas

producido por las condiciones de contorno de Dirichlet y de Neumann y las las cargas externas

aplicadas al tiempo tn+1 asume que (un+1, Γn+1), la deformación u y el patrón de fisuras Γ al

tiempo tn+1, respectivamente, sea un punto de mínimo global del siguiente funcional de energía

(Francfort y Marigo, 1998; Bourdin et al., 2008):

F(tn+1, u, Γ) =

∫

Ω\Γ

ψ(ε) dx− 〈L(tn+1), u〉+ gc H
n−1(Γ), (1)

sujeto a la condición de irreversibilidad Γn ⊆ Γ, con u que verifica las condiciones al contorno

de Dirichlet sobre ∂ΩD y Γ coincidente con el conjunto de discontinuidades de u. En (1), el

término 〈L(tn+1),u〉 representa el trabajo realizado por las cargas externas y las condiciones

de contorno de Neumann. Aquí, ε denota la parte simétrica del gradiente de deformación ∇u,

mientras que Hm−1(Γ) es la medida de Hausdorff de dimensión m− 1 del conjunto rectificable

Γ. El término gc H
m−1(Γ) representa la energía superficial de fractura, y ψ es la densidad de

energía elástica libre.

Sea {β`(·, tn)}`>0 una familia de funciones definidas en Ω, con valores en el intervalo [0, 1],
tales que ĺım`→0 β`(x, tn) = χΓn

(x), donde χX es la función característica del conjunto X ⊆
R

m. A continuación, cuando no hay posibilidad de equivocación, se omiterá la dependencia de

` para simplificar la notación; por ejemplo, un término de esta familia será indicado como βn,

entendiendo que la formulación es válida para cada ` > 0 fijo.

Se considera entonces la siguiente familia de funcionales regularizados, parametrizados por

` > 0, con u y β pertenecientes a subespacios afines de los espacios de Sobolev estándar:

F`(tn+1, u, β) =

∫

Ω

[
R(β)ψ+

0 (ε) + ψ−
0 (ε)

]
dx+

∫

Ω

gc`

c
|∇β|2 dx− 〈L(tn+1), u〉

︸ ︷︷ ︸

Ẽ(tn+1,u, β)

+

∫

Ω

∫ tn+1

tn

gc

c`

dµ

dβ
β̇ dt dx+

∫

Ω
IR+(β − βn) dx

︸ ︷︷ ︸

D(β,βn)

.

(2)

En (2), ψ+
0 y ψ−

0 tienen las siguientes expressiones

ψ±
0 =

λ

2

(
tr[ε±]

)2
+ µε± : ε±
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y representan las densidades de energía elástica libre expresadas en términos de las componen-

tes de deformación ε+ y ε−, obtenidas mediante la descomposición espectral de la deformación

total ε, como en (Miehe et al., 2010; Amor et al., 2009; Luege y Orlando, 2021). Esta des-

composición asocia el daño únicamente a las regiones en tracción. Los parametros λ y µ son

las constantes de Lamé mientras el término IR+(x) es la función indicadora del conjunto R
+,

y garantiza la condición de irreversibilidad β ≥ βn. La función R(β) es la función de degra-

dación de daño, que describe la pérdida progresiva de rigidez del material debido al daño. Es

una función monótonamente decreciente, con R(0) = 1 (material intacto) y R(1) = 0 (material

completamente dañado). Por su parte, la función µ = µ(β), denominada función geométrica

de la fractura, controla la forma y distribución de la densidad de energía asociada a la fisura

regularizada, y se utiliza para definir el pseudopotencial de disipación φ(β, β̇) =
dµ

dt
de manera

que sea una función gauge como función de β̇. La constante c es un factor de escala introducido

en Wu (2017), que depende de la elección específica de µ(β) y se define como:

c =

∫ 1

0

√

µ(β) dβ.

En (Wu, 2017; Lorentz y Godard, 2011) se demuestra que, con esta expresión de c y apropriada

eleción de R(β), la energía de fractura regularizada converge hacia la energía de fractura de

Griffith. En la Tabla 1 se reportan las expresiones de R(β), µ(β) y c para los principales mode-

los de daño regularizado propuestos en la literatura, junto con sus respectivos acrónimos. En la

expresión de R(β) para el modelo de zona cohesiva (CZM) propuesto en Wu (2017), el pará-

metro de ablandamiento ρ > 0 controla el ancho de la banda de daño, y en Lorentz y Godard

(2011) se propone un rango de valores adecuados para dicho parámetro.

Nombre del modelo R(β) µ(β) c

AT1 (1− β)2 β
3

8

AT2 (1− β)2 β2 1

2

CZM
(1− β)2

(1 + ρβ)2
2β − β2 1

π

Tabla 1: Expresiones de la función de degradación R(β) y de la función geométrica de la fractura µ(β) para

diferentes modelos de daño por gradientes regularizados.

Conjeturamos que el funcional F` Γ-converge hacia F . Como consecuencia, se considera el

siguiente problema incremental:

Dado: βn,`, Ln+1, uD,n+1, tN,n+1 n = 0, . . . , N − 1,

Encontra
(
un+1,`, βn+1,`

)
tal que

minimicen F`(tn+1, u, β)

sujeto a β ≥ βn,` .

(3)

Si (un+1,`, βn+1,`) es un punto de `-mínimo global del funcional F`, y si (un+1,`, βn+1,`) →
(u, χΓ) como ` → 0, entonces se puede concluir que (u,Γ) es un punto de mínimo global de
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(1), de acuerdo con (Ambrosio et al., 2000, Prop. 6.13). Dado un funcional F : X → R acotado

inferiormente, se dice que x0 ∈ X es un punto de ε-mínimo global de F si, dado ε > 0, se

cumple que F (x0) < ı́nfx∈X F + ε (Ambrosio et al., 2000).

3. COTAS ENERGETICAS EN LOS PUNTOS DE MINIMO GLOBAL

A partir del resultado establecido al final de la sección anterior, es evidente que la validez

teórica de la formulación variacional de la fractura depende de la capacidad de aproximar los

puntos de mínimo global del problema incremental (3). No obstante, como este resultado está

formulado para ε-mínimos globales, no se requiere una determinación exacta del mínimo. En

efecto, una aproximación suficientemente buena, un ε-mínimo, es teóricamente aceptable, ya

que también conduce a la convergencia en el marco de la Γ-convergencia.

En esta sección, se introducen una serie de condiciones adicionales que son satisfechas ex-

clusivamente en estos puntos. Estas condiciones se utilizarán en la siguiente sección para el

diseño de una estrategia numérica que evita recurrir a métodos de minimización global.

Sean (un, βn) y (un+1, βn+1) las soluciones del problema (3) correspondientes a los instan-

tes de tiempo tn y tn+1, con n = 0, . . . , N − 1, respectivamente.

En el caso particular de que no existan fuerzas volumetricas (b(x, t) = 0 para todo (x, t) ∈
Ω × [0, T ]), las condiciones de Neumann sean homogéneas (t(x, t) = 0 para todo (x, t) ∈
∂ΩN×[0, T ]) y las condiciones de Dirichlet sean de tipo afín en el tiempo (uD(x, t) = tuD,0(x)
para todo (x, t) ∈ ∂ΩD × [0, T ]), se verifica la siguiente desigualdad (Bourdin, 2007):

F`(tn, un, βn) ≤ F`

(

tn,
tn
tn+1

un+1, βn+1

)

.

Es decir,

∫

Ω

[
R(βn)ψ

+
0 (ε(un)) + ψ−

0 (ε(un))
]
dx+

∫

Ω

(
gc
c`
µ(βn) +

gc`

c
|∇βn|

2

)

dx

≤

∫

Ω

[

R(βn+1)ψ
+
0

(

ε

(
tn
tn+1

un+1

))

+ ψ−
0

(

ε

(
tn
tn+1

un+1

))]

dx

+

∫

Ω

(
gc
c`
µ(βn+1) +

gc`

c
|∇βn+1|

2

)

dx := BB.

(4)

Si esta condición es violada, la solución (un, βn) no es un mínimo global, dado que

(tn/tn+1un+1, βn+1) sería una solución admisible con valor energético menor. Es importan-

te precisar que, en (4), el campo de desplazamiento se descompone como u = ũD +u0, donde

ũD ∈ H1(Ω) es un"lifting"de los datos de Dirichlet uD, es decir, una función definida en to-

do Ω tal que ũD(x) = uD(x) para todo x ∈ ∂ΩD. Por su parte, u0 ∈ H1
∂ΩD

(Ω), es decir,

u0 ∈ H1(Ω) y satisface la condición homogénea u0(x) = 0 en ∂ΩD.

Por otro lado, en (Luege y Orlando, 2021; Luege et al., 2025), en un contexto más general

donde pueden estar presentes fuerzas volumetricas, condiciones de Neumann no homogéneas

y condiciones de Dirichlet arbitrarias, se establece que (un+1, βn+1) y (un, βn) satisfacen las
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siguientes cotas energéticas:

LBn := E(tn+1, un+1, βn+1)− E(tn, un+1, βn+1)

≤ Ẽ(tn+1, un+1, βn+1)− Ẽ(tn, un, βn)
︸ ︷︷ ︸

∆Ẽn

+

∫

Ω

gc
c`

(µ(βn+1)− µ(βn)) dx

︸ ︷︷ ︸

Dn(βn+1, βn)

≤ E(tn+1, un, βn)− E(tn, un, βn) := UBn.

(5)

Si una de estas dos cotas es violada, entonces (un+1, , βn+1) no es un mínimo global. Esto

también podría implicar que (un, βn) tampoco lo es si es necesario retroceder más de un paso

en el algoritmo.

4. ALGORITMOS DE BACKTRACKING

El algoritmo se ilustra en el contexto de la resolución, con el método de variables alternadas,

de las condiciones de optimalidad del funcional (2), al cual se suma una función penalizadora

para imponer la restricción β ≥ βn. Esta penalización es del tipo (1/α)ϕ(β − βn), donde

ϕ es una función convexa y diferenciable que satisface ϕ(x) ≥ 0 para todo x, y ϕ(x) = 0
únicamente cuando x ≥ 0. Por ejemplo, ϕ(x) = (〈x〉+)

2 donde 〈x〉+ = (x + |x|)/2. El factor

de penalización α > 0 se toma con un valor muy pequeño para asegurar la convergencia del

método (Gerasimov y De Lorenzis, 2019).

(a) (b)

Figura 1: (a) Algoritmo de backtracking y (b) Posibles situaciones para backtracking considerando K = 2. Cada

cuadrado/círculo contiene la estimación inicial/solución del Problema (3).

En cada paso de tiempo, se controlan las cotas (4) y (5). Si alguna de estas condiciones

es violada por las soluciones computadas (un+1, βn+1) y (un, βn), se retrocede un número

predefinidoK de pasos de tiempo y se reinicia el proceso de minimización alternada, utilizando

un valor inicial distinto para la variable de campo de fase β. La idea es proporcionar una mejor
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estimación inicial para el método de Newton, con el fin de evitar caer en la cuenca de atracción

de un punto crítico del funcional F`(t, u, β) asociado a un estado de energía más alto.

La Figura 1 muestra una implementación conceptual del algoritmo en términos de las varia-

bles discretas U y A, que representan aproximaciones por elementos finitos de u y β, respecti-

vamente, junto con una ilustración de los posibles escenarios de backtracking.

5. EJEMPLO NUMÉRICO

En esta sección se analiza el desempeño de los algoritmos de backtracking en combinación

con el esquema de minimización alternada del funcional F`(t,u, β) en la simulación numérica

de fractura en un ensayo de tracción con entalla lateral (single edge notched), utilizando el

modelo regularizado AT2. El modelo mecánico, junto con la malla de elementos finitos, se

muestran en la Figura 2. Se trata de un problema de referencia ampliamente estudiado en la

literatura (Miehe et al., 2010).

Se considera una carga controlada por desplazamiento, con incrementos ∆w = 10−5 mm.

Este incremento relativamente grueso permite observar diferencias claras entre las soluciones

obtenidas con y sin el algoritmo de backtracking, en particular respecto a la admisibilidad ener-

gética y la consistencia física en la evolución del daño.

(a) (b)

Figura 2: Ensayo de tracción con entalla lateral. (a) Geometría del espécimen y condiciones de borde. (b) Malla

no estructurada de elementos finitos.

Cuando el algoritmo de backtracking no está activado, las soluciones discretas se obtienen

avanzando en el tiempo sin verificar la consistencia energética, es decir, sin imponer las co-

tas energéticas (4) y (5). Como se observa en la Figura 3(a), la trayectoria de la energía total

computada presenta una marcada forma de burbuja durante la fase de evolución del daño. Esto

se debe a la incapacidad del esquema de minimización alternada estándar para escapar de mí-

nimos locales, lo que lleva a una secuencia de configuraciones energéticamente subóptimas. La

violación de las cotas energéticas indica claramente que la solución obtenida no puede conside-

rarse una solución energéticamente admisible.

Al activar la estrategia de backtracking ilustrada en la Figura 1(a), la trayectoria de la solu-

ción se corrige para garantizar el cumplimiento de las cotas energéticas. En cada incremento,

la solución computada se verifica respecto a las condiciones (4) y (5). Si alguna de las dos de-

sigualdades no se cumple, el algoritmo retrocede hasta K pasos, reiniciando la minimización

con una estimación inicial actualizada basada en el último campo de daño. Este proceso se re-

pite hasta encontrar una solución energéticamente admisible o alcanzar el número máximo de

pasos de retroceso. Si al pesar de los retrocesos no se encuentra solución que verifique las cotas,
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incluyendo el caso en el cual el agoritmo entra en un ciclo indefinido, las opciones son ajustar

las tolerancias y/o reducir el paso de carga. Cabe destacar que esta situación no ocurrió en la

simulación presentada.

La Figura 3(c) muestra que, al aplicar el backtracking, el incremento energético se mantiene

consistentemente dentro de los límites prescritos, restaurando así la consistencia energética y

permitiendo al algoritmo identificar trayectorias de daño físicamente significativas. La evolu-

ción resultante de la energía total es suave, monótona y libre de la burbuja artificial observada

con el esquema estándar.

(a) (b)

(c) (d)

Figura 3: Resultados para ∆w = 10−5,mm. (a) Evolución de la energía total E(tn+1,Un+1,An+1) +
∑n

i=0
D(Ai,Ai+1), para n = 0, 1, . . . , N − 1, sin backtracking (K = 0) y con backtracking (K = 50), uti-

lizando únicamente la cota (4), únicamente las cotas (5), o bien el algoritmo híbrido ilustrado en la Figura 1(a).
(b)Evolución de la energía incremental total En + Dn,n+1 sin bactracking y con backtracking híbrido. (c) Evolu-

ción de la energía incremental total En+ 1−En+Dn,n+1 junto con las cotas (5), sin backtracking. (d) Evolución

correspondiente con backtracking.

A partir de la comparación entre estrategias de backtracking basadas exclusivamente en (4) o

en (5), mostrada en la Figura 3(b) y (c), se puede inferir que las cotas (5) proporcionan un con-

trol más estricto sobre la evolución energética, aunque pueden conllevar una mayor frecuencia
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de pasos de retroceso. Por su parte, la cota (4) resulta más sencilla de evaluar y menos restrictiva,

lo que implica menos pasos de retroceso, aunque con una corrección energética potencialmente

menos precisa, y aplicable solo para variaciones monotonas de las condiciones al contorno de

tipo Dirichlet.

Mediante una estrategia híbrida se logra un equilibrio adecuado, asegurando la admisibilidad

energética sin incurrir en costos computacionales innecesarios.

6. CONCLUSIONES

El uso del algoritmo de backtracking, especialmente en conjunto con las cotas energéticas

(5), mejora significativamente la calidad de las soluciones computadas. En regímenes de incre-

mentos gruesos, como ∆w = 10−5 mm, este enfoque resulta crucial para imponer admisibilidad

energética y evitar trayectorias físicamente inconsistentes debidas a atrapamientos en mínimos

locales.

La cota superior (4) sigue siendo una alternativa válida en aplicaciones donde la eficiencia

computacional es prioritaria, mientras que la estrategia híbrida ofrece una combinación robusta

y flexible, equilibrando precisión y costo computacional.

AGRADECIMIENTOS

Los autores agradecen el apoyo financiero parcial del CONICET y la UNT a través de los

Proyectos PIP 2023–2025 634 y PIUNT CX-E729, respectivamente.

REFERENCIAS

Ambrosio L., Fusco N., y Pallara D. Functions of bounded variations and free discontinuity

problems. Oxford University Press, 2000.

Amor H., Marigo J., y Maurini C. Regularized formulation of the variational brittle fracture

with unilaterla contact: Numerical experiments. J. Mech. Phys. Solids, 57:1209–1229, 2009.

Bourdin B. Numerical implementation of the variational formulation for quasi-static brittle

fracture. Interfaces Free Boundaries, 9:411–430, 2007.

Bourdin B., Francfort G., y Marigo J. The Variational Approach to Fracture. Springer-Verlag,

New York, 2008.

Francfort G. y Marigo J. Revisiting brittle fracture as an energy minimization problem. J. Mech.

Phys. Solids, 46:1319–1342, 1998.

Gerasimov T. y De Lorenzis T. On penalization in variational phase-field models of brittle

fracture. Comput. Methods Appl. Mech. Eng., 354:990–1026, 2019.

Lorentz E. y Godard V. Gradient damage models: Toward full-scale computations. Comput.

Methods Appl. Mech. Eng., 200:1927–1944, 2011.

Luege M., Campra A., y Orlando A. Numerical simulation of a variational phase–field model

for thermoelastic quasi–brittle fracture. 2025. En preparación.

Luege M. y Orlando A. A variational asymmetric phase-field model of quasi-brittle fracture:

Energetic solutions and their computation. Int J Solids Struct, 225:110940, 2021.

Miehe C., Hofacker M., y Welschinger F. A phase field model for rate-independent crack

propagation: Robust algorithmic implementation based on operator splits. Comput. Methods

Appl. Mech. Eng., 199:2765–2778, 2010.

Wu J. A unified phase–field theory for the mechanics of damage and quasi–brittle failure in

solids. J. Mech. Phys. Solids, 103:20–42, 2017.

Mecánica Computacional Vol XLII, págs. 1359-1368 (2025) 1367

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Wu J., Nguyen V., Nguyen C., Sutula D., Sinaie S., y Bordas S. Phase-field modeling of fracture.

Advances in Applied Mechanics, 53:1–183, 2020.

M. LUEGE, A. CAMPRA, A. ORLANDO1368

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar

	Introducción
	Formulación Variacional Regularizada
	Cotas energeticas en los puntos de minimo global
	Algoritmos de Backtracking
	Ejemplo Numérico
	Conclusiones

