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Resumen. En este articulo se comparan dos estrategias de backtracking disefiadas para mejorar la cali-
dad de las soluciones numéricas de un modelo variacional de tipo phase-field para fractura cuasi-fragil.
La primera estrategia corresponde al método cldsico de reinicializacién propuesto por Bourdin (2007),
cuya eficacia ha sido validada en diversos escenarios, y que asume la aplicacién exclusiva de condiciones
de contorno de tipo Dirichlet con variacién mondtona. La segunda estrategia relaja esta hipdtesis y se
basa en propiedades del punto de minimo global, expresadas mediante dos cotas energéticas. A partir de
un problema de referencia, se comparan ambas estrategias. Dado que no es posible determinar a priori
cudl de ellas ofrece mejores resultados en general, se propone un algoritmo hibrido que combina ambas
de manera adaptativa, con el objetivo de aprovechar las ventajas de cada una segun las caracteristicas del
problema considerado.

Keywords: Variational model of fracture; Gradient—-damege model; Energetic bounds; Backtracking.

Abstract. This article compares two backtracking strategies designed to improve the quality of numeri-
cal solutions of a variational phase-field model for quasi-brittle fracture. The first strategy corresponds to
the classical reinitialization method proposed by Bourdin (2007), whose effectiveness has been validated
in various scenarios, and which assumes the exclusive application of Dirichlet-type boundary conditions
with monotonic variation. The second strategy relaxes this assumption and is based on properties of the
global minimizer, expressed in the form of two energy bounds. Based on a benchmark problem, both
strategies are compared. Since it is not possible to determine a priori which of them generally provides
better results, a hybrid algorithm is proposed that adaptively combines both strategies, aiming to leverage
the advantages of each depending on the characteristics of the problem under consideration.
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1. INTRODUCCION

La simulacién numérica de la fractura en materiales cuasi-fragiles, tales como cerdmicas,
placas de marmol o estructuras de hormigén, representa un desafio central en la mecanica
computacional. Bajo condiciones isotérmicas y cargas mecénicas, estos materiales desarrollan
mecanismos de dafio que requieren modelos capaces de capturar la nucleacién, propagacion y
coalescencia de grietas de forma precisa y eficiente. Una de las aproximaciones mas robustas
para modelar este fendmeno es la formulacion variacional de la fractura propuesta por Franc-
fort y Marigo (1998); Bourdin et al. (2008), la cual reinterpreta el criterio de Griffith como una
condicién de optimalidad basada en la minimizacion global de la energia total del sistema. Es-
ta energia se define como la suma de la energia eldstica almacenada en el cuerpo y la energia
disipada en la generacion de nuevas superficies de fractura.

Dicho enfoque se enmarca en la teoria de los problemas de discontinuidades libres, cuyo
tratamiento formal requiere el uso del espacio funcional de funciones SBV (Special functions
of Bounded Variation) (Ambrosio et al., 2000). Sin embargo, el tratamiento numérico directo
de funciones SBV es impracticable en la practica. Un resultado clave en este contexto es que
los cuasi-minimos globales de versiones regularizadas de estos funcionales convergen, en un
sentido preciso, al minimo global del funcional con discontinuidades libres. Esta regularizacion
permite formular el problema en espacios de Sobolev, que son compatibles con métodos de
elementos finitos.

A pesar del s6lido marco tedérico que respalda la formulacién variacional y sus versiones
regularizadas, la obtencién numérica de soluciones que correspondan a puntos de cuasi-minimo
global sigue siendo un reto no resuelto. En la practica, los algoritmos existentes (Miehe et al.,
2010; Wu et al., 2020) suelen centrarse en resolver las condiciones de primer orden de optima-
lidad o las condiciones de Kuhn-Tucker. No obstante, debido a la no convexidad del problema,
estas condiciones son necesarias pero no suficientes para garantizar que la solucién obtenida
corresponde a un minimo global. Como resultado, la validacién de las soluciones numéricas
se basa comunmente en inspecciones visuales o comparaciones cualitativas con resultados ex-
perimentales, careciendo de un criterio riguroso que asegure la consistencia con el principio
variacional que motiva el modelo.

En este trabajo se aborda esta limitacién proponiendo una estrategia computacional que
mejora la confiabilidad de los esquemas de minimizacién alternada basados en el método de
Newton, sin recurrir a técnicas de optimizacién global, las cuales resultan computacionalmente
prohibidas debido a la alta dimensionalidad del problema. Se considera una familia de funcio-
nales regularizados que son separadamente convexos con respecto al desplazamiento u y al
campo de dafo tipo phase-field 3, el cual varia en el intervalo [0, 1]. A partir de esta formu-
lacidn, se deriva una desigualdad energética con cotas superior e inferior, la cual se satisface
Unicamente en puntos de minimo global. Esta desigualdad se introduce como un criterio adicio-
nal de optimalidad dentro de un algoritmo de backtracking, aumentando la robustez y precision
de la solucién.

Asimismo, se compara esta estrategia con el enfoque cldsico de backtracking propuesto en
Bourdin (2007), el cual asume solo condiciones al contorno de tipo Dirichlet con variacién de
tipo mondétona. Dado que ninguna de las dos estrategias es universalmente superior, lo que moti-
va el desarrollo de un algoritmo hibrido que combina ambas de forma adaptativa, seleccionando
la mas adecuada segtn el régimen de carga del problema.

Finalmente, se presenta un ejemplo numérico que ilustra la implementacién y el desempefio
del algoritmo propuesto. Los resultados muestran una buena concordancia entre los patrones

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 1359-1368 (2025) 1361

de fisura simulados y las observaciones experimentales, validando la efectividad y solidez del
enfoque desarrollado.

2. FORMULACION VARIACIONAL REGULARIZADA

Sea (2 C R™ un conjunto abierto, acotado y simplemente conexo con m = 1, 2, 3 y contorno
0€) de tipo Lipschitz. Este dominio representa la configuracion de referencia de un cuerpo
eldstico-lineal libre de fisuras. Consideremos P = {tp = 0 < t; < ... < ty = T}, una
particién del intervalo de tiempo [0, T']. Denotamos por I',, C €2 el patr6n de fisuras en el instante
t,. Se asume que este patron es un conjunto rectificable de (2 de dimensién m — 1 (Ambrosio
et al., 2000). Ademads, I',, se identifica con la unién de los conjuntos de discontinuidades de tipo
salto de los desplazamientos u; (0 < ¢ < n), es decir, I';, = [J;_,I';, donde I'; es el conjunto
de las discontinuidades de tipo salto de u;.

La formulacion variacional del proceso mecédnico de propagacion y formacion de fracturas
producido por las condiciones de contorno de Dirichlet y de Neumann y las las cargas externas
aplicadas al tiempo ¢, 1 asume que (u, 11, [',11), la deformacion w y el patrén de fisuras I al
tiempo ¢, 1, respectivamente, sea un punto de minimo global del siguiente funcional de energia
(Francfort y Marigo, 1998; Bourdin et al., 2008):

Fltni1, u, I') = o (e)dx — (L(tni1), u) + g H" H(T), (1)
sujeto a la condicidn de irreversibilidad I',, C I, con u que verifica las condiciones al contorno
de Dirichlet sobre 0€)p y I' coincidente con el conjunto de discontinuidades de u. En (1), el
término (L(t,41),u) representa el trabajo realizado por las cargas externas y las condiciones
de contorno de Neumann. Aqui, € denota la parte simétrica del gradiente de deformacién Vu,
mientras que H™ *(T) es la medida de Hausdorff de dimensién m — 1 del conjunto rectificable
I. El término g, H™ !(T") representa la energia superficial de fractura, y ¢ es la densidad de
energia elastica libre.

Sea {5(-,tn) }e~0 una familia de funciones definidas en €2, con valores en el intervalo [0, 1],
tales que lim,_o B¢(, t,) = xr, (), donde y x es la funcién caracteristica del conjunto X C
R™. A continuacién, cuando no hay posibilidad de equivocacion, se omitera la dependencia de
¢ para simplificar la notacién; por ejemplo, un término de esta familia serd indicado como f3,,,
entendiendo que la formulacién es valida para cada ¢ > 0 fijo.

Se considera entonces la siguiente familia de funcionales regularizados, parametrizados por
¢ > 0, con u y [ pertenecientes a subespacios afines de los espacios de Sobolev estandar:

Filtusrs w. )= [ RO )+ 05 @] do+ [ 295R dw — (£ltn). w)

E(tny1,u, B)

lny1 Je du i

2)

n

D(B,8n)

En (2), 1§ y %, tienen las siguientes expressiones

A
VE = 5 (trfe®))? + pe*: e*
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y representan las densidades de energia eldstica libre expresadas en términos de las componen-
tes de deformacién et y e, obtenidas mediante la descomposicion espectral de la deformacién
total €, como en (Miehe et al., 2010; Amor et al., 2009; Luege y Orlando, 2021). Esta des-
composicién asocia el dafio tnicamente a las regiones en traccion. Los parametros A y p son
las constantes de Lamé mientras el término I+ (z) es la funcién indicadora del conjunto R,
y garantiza la condicién de irreversibilidad § > [,,.. La funcién R(53) es la funcion de degra-
dacion de daiio, que describe la pérdida progresiva de rigidez del material debido al dafio. Es
una funcién monétonamente decreciente, con R(0) = 1 (material intacto) y R(1) = 0 (material
completamente dafiado). Por su parte, la funcion p = (), denominada funcion geométrica
de la fractura, controla la forma y distribucién de la densidad de energia asociada a la fisura

: d
regularizada, y se utiliza para definir el pseudopotencial de disipacién ¢(3, §) = d—'l: de manera

que sea una funcién gauge como funcién de 3. La constante ¢ es un factor de escala introducido
en Wu (2017), que depende de la eleccidn especifica de p(3) y se define como:

c:/olmdﬁ.

En (Wu, 2017; Lorentz y Godard, 2011) se demuestra que, con esta expresion de c y apropriada
elecion de R([3), la energia de fractura regularizada converge hacia la energia de fractura de
Griffith. En la Tabla 1 se reportan las expresiones de R(/3), i(3) y ¢ para los principales mode-
los de dafio regularizado propuestos en la literatura, junto con sus respectivos acréonimos. En la
expresion de R(/3) para el modelo de zona cohesiva (CZM) propuesto en Wu (2017), el para-
metro de ablandamiento p > 0 controla el ancho de la banda de dafio, y en Lorentz y Godard
(2011) se propone un rango de valores adecuados para dicho pardmetro.

Nombre del modelo R(5) wip) ¢
ATI -7 53

e aeg s L
(1-p) e L

e ropp P77 3

Tabla 1: Expresiones de la funcién de degradacién R(S) y de la funcién geométrica de la fractura 1(3) para
diferentes modelos de dafio por gradientes regularizados.

Conjeturamos que el funcional F, I'-converge hacia /. Como consecuencia, se considera el
siguiente problema incremental:

DadO Bﬂ,b £n+1, 'U/Dm+1, tN7n+1 n = O, e ,N — 1,
Encontra (w,i1¢, Bn+1,) tal que

minimicen Fy(tn.1, u, /)
sujeto a 3 > B

3)

Si (Wpn+1.0, Bni1e) €s un punto de (-minimo global del funcional Fy, y si (@10, Bnt1e) —
(u, xr) como ¢ — 0, entonces se puede concluir que (u,I") es un punto de minimo global de
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(1), de acuerdo con (Ambrosio et al., 2000, Prop. 6.13). Dado un funcional /' : X — R acotado
inferiormente, se dice que zp € X es un punto de e-minimo global de [ si, dado € > 0, se
cumple que F'(zg) < inf,cx F' + € (Ambrosio et al., 2000).

3. COTAS ENERGETICAS EN LOS PUNTOS DE MINIMO GLOBAL

A partir del resultado establecido al final de la seccién anterior, es evidente que la validez
tedrica de la formulacion variacional de la fractura depende de la capacidad de aproximar los
puntos de minimo global del problema incremental (3). No obstante, como este resultado esta
formulado para e-minimos globales, no se requiere una determinacion exacta del minimo. En
efecto, una aproximacion suficientemente buena, un e-minimo, es tedricamente aceptable, ya
que también conduce a la convergencia en el marco de la I'-convergencia.

En esta seccion, se introducen una serie de condiciones adicionales que son satisfechas ex-
clusivamente en estos puntos. Estas condiciones se utilizardn en la siguiente seccién para el
disefio de una estrategia numérica que evita recurrir a métodos de minimizacion global.

Sean (w,, 3,) Yy (Wni1, Bnr1) las soluciones del problema (3) correspondientes a los instan-
tes de tiempo ¢,, y t,4+1,conn =0, ..., N — 1, respectivamente.

En el caso particular de que no existan fuerzas volumetricas (b(x,t) = 0 para todo (x, t)
2 x [0,T]), las condiciones de Neumann sean homogéneas (t(x,t) = 0 para todo (x,t)
0Qn %[0, T]) y las condiciones de Dirichlet sean de tipo afin en el tiempo (up(x,t) = t up o(x)
para todo (x, t) € 9Qp x [0, T1]), se verifica la siguiente desigualdad (Bourdin, 2007):

S
S

ln
fﬂ(tn; Uy, ﬁn) S FZ (tTH — Up+1, ﬁnJrl) .

tn—i—l

Es decir,

[ v et + v (etu)] o+ [ (% i)+ % (95, o

<l (e () o (e (s o @

C Cg
b (i) + 2 (950 ) bx = .
q \ ¢/ c

Si esta condicién es violada, la solucién (u,, 5,) no es un minimo global, dado que
(tn/tni1Uni1, Bni1) seria una solucién admisible con valor energético menor. Es importan-
te precisar que, en (4), el campo de desplazamiento se descompone como © = up + ug, donde
up € H 1(Q) es un"lifting"de los datos de Dirichlet wp, es decir, una funcién definida en to-
do  tal que up(x) = up(x) para todo = € IQp. Por su parte, ug € Hj,, (), es decir,
ug € H'(Q) y satisface la condicién homogénea ug(x) = 0 en 9Qp.

Por otro lado, en (Luege y Orlando, 2021; Luege et al., 2025), en un contexto mds general
donde pueden estar presentes fuerzas volumetricas, condiciones de Neumann no homogéneas
y condiciones de Dirichlet arbitrarias, se establece que (u, 11, Sni1) ¥ (Un, 5,) satisfacen las
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siguientes cotas energéticas:

LBn = g<tn+17 Un+1, Bn-l—l) - g<tna un+1> ﬂn—l—l)

| )

S g(tn+1a ’U'n-i-la Bn—&-l) - é(tna U, ﬁnz+ 0 CC (M(ﬁn-ﬁ-l) - /L(Bn)) dX

[

)

J/

A&, g
Dn (5n+1 ) Bn)

< E(tna1, Un, Bn) — E(tn, Uy, Bn) := UB,,.

Si una de estas dos cotas es violada, entonces (U1, , 3,+1) no es un minimo global. Esto
también podria implicar que (w,,, (,) tampoco lo es si es necesario retroceder mds de un paso
en el algoritmo.

4. ALGORITMOS DE BACKTRACKING

El algoritmo se ilustra en el contexto de la resolucién, con el método de variables alternadas,
de las condiciones de optimalidad del funcional (2), al cual se suma una funcién penalizadora
para imponer la restriccién S > f,,. Esta penalizacion es del tipo (1/a)¢(8 — B,), donde
¢ es una funcién convexa y diferenciable que satisface p(z) > 0 para todo x, y p(z) = 0
tnicamente cuando = > 0. Por ejemplo, ¢(z) = ({x))? donde (z), = (x + |z|)/2. El factor
de penalizacion a > 0 se toma con un valor muy pequefio para asegurar la convergencia del
método (Gerasimov y De Lorenzis, 2019).

Algoritmo de Backtracking th2 thet tn thit
Data: N, K, 7 (tolerancia cota), (U, Ag)
Result: (U,, A,)n=1,...,] N Un-3,An-3 Un-2,An-2 Un-1,An-1
1 set Un-2,An-2 Un-1,An-1 Un,An
3 L n = 0 , Bounds metby Bounds metby Boundsmetby Boundsnot met by
s [ A=A, V=0, (Un3,An3)&  (Un2An2)&  (Un-1,An1)& (Un, An) &
7 repeat (Un-2, An-2) (Un-1, An-1) (Un, An) (Un+1, An+1)
9 solve
11 input : A°, U, A,
13 Algoritmo de MA: (U1, A,+1) = ARGMIN F(t,+1,U, A; A,)
15 output: U, 1, A,
16 set
18 | A=A4,,,U0"=U,.. tn-2 th-1
20 if Cotas (4) A (5) son satisfechas then Un-3,An-3 Un-2,An-2
22 ‘ n < n+ 1 (Proceda al siguiente paso) Un-2,An-2 Un-1,An-1
2 | else Bounds metby  Bounds metby Bounds not met by
25 b =0 (Contador de regresos) (Un-3, An-3) & (Un2, An2) & (Un-1, An-1) &
27 repeat ! L
29 n < n —1 (Regresa un paso) (Un-2, An-2) (Un-1, An-1) (U, An)
31 b=>b+1
33 solve
35 input : A°, U°, A,
37 Algoritmo de MA: (U,.,, A,;1) = ARGMIN F(t,.,,U, A; A,)
39 output: U,,.1, A, 11 tn-2 th+1
40 set 7
Un-3,An-3 Un-2, A*
42 I_ A=A, U =U,,, Un-a. Ana Unt A
a3 until Cotas (4) A (5) son satisfechas V b = K
a5 n < n+ 1 (Proceda al siguiente paso) B((l)Jun:'SAm:)tgy i%und;me)t;y
L ‘ n-3, An-. n-2, An-2
46 until n = N (Un-2, An-2) (U'n-1, A'n-1)

(a) (b)

Figura 1: (a) Algoritmo de backtracking y (b) Posibles situaciones para backtracking considerando K = 2. Cada
cuadrado/circulo contiene la estimacion inicial/solucién del Problema (3).

En cada paso de tiempo, se controlan las cotas (4) y (5). Si alguna de estas condiciones
es violada por las soluciones computadas (%11, Bnt1) ¥ (@n, Bn), se retrocede un nimero
predefinido K de pasos de tiempo y se reinicia el proceso de minimizacién alternada, utilizando
un valor inicial distinto para la variable de campo de fase 3. La idea es proporcionar una mejor
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estimacion inicial para el método de Newton, con el fin de evitar caer en la cuenca de atraccion
de un punto critico del funcional F;(¢, u, ) asociado a un estado de energia mas alto.

La Figura 1 muestra una implementacion conceptual del algoritmo en términos de las varia-
bles discretas U y A, que representan aproximaciones por elementos finitos de w y 3, respecti-
vamente, junto con una ilustracion de los posibles escenarios de backtracking.

5. EJEMPLO NUMERICO

En esta seccion se analiza el desempefio de los algoritmos de backtracking en combinacion
con el esquema de minimizacién alternada del funcional (¢, u, 3) en la simulaciéon numérica
de fractura en un ensayo de traccidn con entalla lateral (single edge notched), utilizando el
modelo regularizado AT2. El modelo mecanico, junto con la malla de elementos finitos, se
muestran en la Figura 2. Se trata de un problema de referencia ampliamente estudiado en la
literatura (Miehe et al., 2010).

Se considera una carga controlada por desplazamiento, con incrementos Aw = 10~° mm.
Este incremento relativamente grueso permite observar diferencias claras entre las soluciones
obtenidas con y sin el algoritmo de backtracking, en particular respecto a la admisibilidad ener-
gética y la consistencia fisica en la evolucién del dafio.

L K

NN
Vo

tw

JU

5mm

5mm

VAV WA VA
5mm = 5mm

(a) (b)

Figura 2: Ensayo de traccién con entalla lateral. (a) Geometria del espécimen y condiciones de borde. (b) Malla
no estructurada de elementos finitos.

Cuando el algoritmo de backtracking no estd activado, las soluciones discretas se obtienen
avanzando en el tiempo sin verificar la consistencia energética, es decir, sin imponer las co-
tas energéticas (4) y (5). Como se observa en la Figura 3(a), la trayectoria de la energia total
computada presenta una marcada forma de burbuja durante la fase de evolucion del dafio. Esto
se debe a la incapacidad del esquema de minimizacién alternada estdndar para escapar de mi-
nimos locales, lo que lleva a una secuencia de configuraciones energéticamente subdptimas. La
violacién de las cotas energéticas indica claramente que la solucién obtenida no puede conside-
rarse una solucion energéticamente admisible.

Al activar la estrategia de backtracking ilustrada en la Figura 1(a), la trayectoria de la solu-
cién se corrige para garantizar el cumplimiento de las cotas energéticas. En cada incremento,
la solucién computada se verifica respecto a las condiciones (4) y (5). Si alguna de las dos de-
sigualdades no se cumple, el algoritmo retrocede hasta K pasos, reiniciando la minimizacién
con una estimacion inicial actualizada basada en el dltimo campo de dafio. Este proceso se re-
pite hasta encontrar una solucion energéticamente admisible o alcanzar el nimero maximo de
pasos de retroceso. Si al pesar de los retrocesos no se encuentra solucién que verifique las cotas,
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incluyendo el caso en el cual el agoritmo entra en un ciclo indefinido, las opciones son ajustar
las tolerancias y/o reducir el paso de carga. Cabe destacar que esta situacion no ocurri en la
simulacién presentada.

La Figura 3(c) muestra que, al aplicar el backtracking, el incremento energético se mantiene
consistentemente dentro de los limites prescritos, restaurando asi la consistencia energética y
permitiendo al algoritmo identificar trayectorias de dafio fisicamente significativas. La evolu-
cion resultante de la energia total es suave, mondétona y libre de la burbuja artificial observada
con el esquema estandar.

25 :
E+ZD I
— | L without bt ] 0.07 | 4
E 2 — l/ /£n+$n,ﬂ+1_BB
é &+ 3 with bt 8 LB-UB E 3 | withoutbt 1
@ z |
2 15 &+ Z9P with bt & Hybrid | g 005 - | ]
% &+ XD with bt & Bourdin bnds § :
S € | 1
(=)
> - |
5 L 4 D o03f | 1
2 g '
w i} | N |
|
£n+‘?n+1_BB I
051 \wete-5mm 1 0.01 with bt Hybrid I B
/ \\ /1
g 7
0 —0 _ -
0.009 0 0.005 001 0015
w [mm]
. x103 ' ' ' '
—
g L
£ g 6
=2
g 1 Z
()
S S
g . | S af
= (o)
q ES
> Q
2 H . S
j5) b
< e Ll
u &
002 | ,
N . 4
| without backtracking | 077" withbacktracking
Aw=1e-5mm Aw=1e-5mm
003 , K ‘ ‘ . . ‘ . ‘ . . .
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Figura 3: Resultados para Aw = 107° mm. (a) Evolucién de la energfa total &(t,11,Unt1,Ant1) +

S oD(A;, Aiq), paran = 0,1,..., N — 1, sin backtracking (K = 0) y con backtracking (K = 50), uti-
lizando dnicamente la cota (4), Ginicamente las cotas (5), o bien el algoritmo hibrido ilustrado en la Figura 1(a).
(b)Evolucién de la energfa incremental total £,, + Dy, ,, 41 sin bactracking y con backtracking hibrido. (¢) Evolu-
cién de la energia incremental total En + 1 — En+D,, 41 junto con las cotas (5), sin backtracking. (d) Evolucién
correspondiente con backtracking.

A partir de la comparacion entre estrategias de backtracking basadas exclusivamente en (4) o
en (5), mostrada en la Figura 3() y (c¢), se puede inferir que las cotas (5) proporcionan un con-
trol mds estricto sobre la evolucidn energética, aunque pueden conllevar una mayor frecuencia
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de pasos de retroceso. Por su parte, la cota (4) resulta mas sencilla de evaluar y menos restrictiva,
lo que implica menos pasos de retroceso, aunque con una correccion energética potencialmente
menos precisa, y aplicable solo para variaciones monotonas de las condiciones al contorno de
tipo Dirichlet.

Mediante una estrategia hibrida se logra un equilibrio adecuado, asegurando la admisibilidad
energética sin incurrir en costos computacionales innecesarios.

6. CONCLUSIONES

El uso del algoritmo de backtracking, especialmente en conjunto con las cotas energéticas
(5), mejora significativamente la calidad de las soluciones computadas. En regimenes de incre-
mentos gruesos, como Aw = 10~° mm, este enfoque resulta crucial para imponer admisibilidad
energética y evitar trayectorias fisicamente inconsistentes debidas a atrapamientos en minimos
locales.

La cota superior (4) sigue siendo una alternativa vélida en aplicaciones donde la eficiencia
computacional es prioritaria, mientras que la estrategia hibrida ofrece una combinacién robusta
y flexible, equilibrando precision y costo computacional.
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