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Abstract. Structural integrity assessment of concrete infrastructures is increasingly reliant on non-

destructive testing (NDT) techniques capable of delivering real-time, in-situ information about damage 
evolution. Among these, Acoustic Emission (AE) stands out as a passive monitoring method that 
captures stress-induced ultrasonic wave emissions generated by internal material changes, such as 
microcracking. AE offers a unique advantage: it allows volumetric, continuous monitoring of 
structural elements without invasive procedures. 
However, a critical challenge in AE-based monitoring is the vast volume of signal data generated 
during structural loading, which complicates manual interpretation and reduces the practicality of the 
technique in operational settings. To address this, Machine Learning (ML) methods have been 
introduced to support automated signal classification and pattern recognition. 
In this work, we present experimental results from reinforced concrete beams subjected to four-point 
bending until failure under controlled conditions. AE signals were continuously recorded using a 
sensor array, and parameters such as amplitude, energy, and duration were extracted. These signals 
were then analyzed through a trained Multilayer Perceptron (MLP) neural network model to classify 
AE events into “cracking” and “non-cracking” categories. The approach was specifically designed to 
enhance real-time interpretation of AE data in structural applications. 
The results show a strong correlation between AE signal characteristics and the evolution of damage in 
concrete elements. The ML approach significantly enhanced the detection accuracy, enabling 
automated, real-time identification of crack initiation and propagation. These findings highlight the 
combined power of AE and AI for effective structural health monitoring and early warning systems in 
aging concrete infrastructure. 
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1 INTRODUCTION 

Reinforced concrete (RC) is the most widely used construction material worldwide due to 

its durability, versatility, and relatively low cost. However, its performance can be critically 

affected by cracking, which may compromise integrity, durability, and service life. 

Traditional crack detection relies primarily on visual inspection, which is subjective and 

limited, especially for large infrastructures or inaccessible areas (see Figure 1). 

Structural failures in concrete infrastructures pose significant risks to safety, serviceability, 

and economic costs. Recent catastrophic events, such as the collapse of the Polcevera Viaduct 

in Genoa, Italy, or the Champlain Towers South in the USA, highlight the vulnerability of 

aging structures and the limitations of periodic visual inspection. These examples emphasize 

the need for continuous and objective monitoring techniques capable of detecting early signs 

of structural distress. Structural Health Monitoring (SHM) provides such capability, enabling 

continuous evaluation of structural integrity and delivering data to support maintenance and 

repair decisions. In particular, cracking in concrete is often the earliest indicator of 

deterioration, making its early detection especially critical in high-risk facilities such as 

nuclear power plants. 

AE monitors ultrasonic-frequency elastic waves generated within a material when it 

undergoes stress changes, such as micro-cracking, crack propagation, or friction between 

crack surfaces, allowing the detection of damage processes as they develop. Unlike active 

methods (e.g., ultrasound), AE is passive: sensors placed at the surface detect naturally 

occurring elastic waves without introducing external signals, allowing continuous monitoring 

in real time. AE can provide information about the location, magnitude, and evolution of 

damage, as well as the type of cracking mechanism involved. The main challenge of AE lies 

in the large volume of signals generated (Figure 2), which can include noise from 

environmental or mechanical sources. Therefore, robust data processing and automated 

analysis are essential to extract meaningful structural information. 

Machine Learning (ML) has emerged as a powerful tool to address these challenges. By 

uncovering patterns and relationships in Acoustic Emission (AE) data, ML models can 

classify events, distinguish between crack mechanisms, and enhance real-time monitoring 

capabilities. 

In this study, we present an application of Multilayer Perceptron (MLP) neural networks 

for AE-based crack detection in reinforced concrete beams under controlled laboratory 

loading conditions. The MLP model is trained to identify AE signal patterns associated with 

crack development, offering a computationally efficient and reliable approach for automated 

SHM. 
 

 

Figure 1: Typical cracks in reinforced concrete beams.  
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Figure 2: Diagram illustrating AE generation in reinforced concrete under stepped-loading and detection by 

surface-mounted sensors. 

2 BACKGROUND 

AE has proven effective as a passive, NDT method for monitoring ultrasonic elastic waves 

generated by internal events, such as crack formation and propagation, in concrete under 

stress. Our previous studies highlighted the potential of AE to monitor damage processes in 

fiber-reinforced concretes and complex loading scenarios. For instance, AE parameters have 

been successfully employed to track crack initiation and propagation in beams under cyclic 

loading (Xargay et al., 2021), as well as to characterize the mechanical response of self-

compacting high-strength fiber-reinforced concrete after exposure to elevated temperatures 

(Xargay et al., 2018). These contributions support the usefulness of AE for assessing both 

load-induced and thermally induced degradation in cementitious composites.  

However, the large volumes of data generated present challenges in processing and 

interpretation. To overcome these limitations, the application of AE techniques combined 

with ML for crack detection in RC structures has gained significant attention in recent years. 

Latest studies have explored various ML strategies to improve the analysis of AE signals. 

Barbosh et al. (2024) demonstrated automated crack identification in concrete structures by 

coupling AE with deep learning models, highlighting the potential for real-time structural 

monitoring. Similarly, Inderyas et al. (2024) proposed a deep learning-based filtering model 

for AE signals in RC elements, improving the reliability of crack detection and reducing false 

positives. Deep convolutional neural networks have also been widely applied to AE and 

image-based crack detection. Siracusano et al. (2019) exploited statistical event descriptors 

from AE signals to automatically classify cracks, while Yang et al. (2021) and Kumar and 

Ghosh (2020) used convolutional architectures for rapid identification of crack patterns in 

concrete specimens, demonstrating high accuracy and robustness across different 

experimental setups. The integration of AE with AI techniques extends beyond detection to 

localization and characterization of cracks. Boschetti et al. (2023) implemented an AI-based 

procedure for AE signal analysis to locate crack sources in concrete structures, and Zhang and 

Choi (2025) proposed a transfer learning framework for AE source localization in RC 

components, enabling adaptation across different structural geometries and sensor layouts. 

Carpinteri and Lacidogna (2022) provided a comprehensive review of ML-based AE 

methods, summarizing advances in feature extraction, signal classification, and predictive 

modeling. Further, Tonelli and Tulliani (2023) demonstrated the identification of crack 
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patterns in cementitious materials based on AE signal clustering, offering insights into the 

types of micro- and macro-cracks that develop under varying load conditions. Singh and 

Chandra Kishen (2021) applied ML-based AE techniques for corrosion detection in RC, 

indicating the versatility of AE monitoring when combined with AI-driven data analysis. 

In summary, the combination of AE and ML provides a powerful tool for SHM of RC 

structures, enabling early detection, classification, and localization of cracks. These 

approaches significantly enhance the reliability and scalability of SHM systems, particularly 

in complex or critical infrastructures where traditional inspection methods are limited. 

3 METHODOLOGY 

The methodology of this study combines experimental testing, AE monitoring, and ML to 

detect cracks in RC beams under controlled laboratory conditions. 

3.1 Experimental Setup 

Reinforced concrete beams (120 × 300 mm cross-section, 210 cm length) were prepared 

using normal strength concrete mix design (compressive strength 35 MPa). Beams were 

reinforced with steel bars according to conventional structural design practices (see Figure 3).  

The beams were subjected to four-point bending tests using a hydraulic testing machine to 

simulate controlled load conditions. The loading protocol consisted of incremental cycles, 

increasing the applied load until failure. Each cycle included a rising branch, a constant 

maximum load stage, and a descending branch. This approach allowed the recording of AE 

signals corresponding to crack initiation, propagation, closing and ultimate failure. 

 

Figure 3: Four-point bending test setup for RC beam. 

3.2 Acoustic Emission Monitoring 

This paper presents the analysis of one beam from the experimental campaign, as shown in 

Figure 3. Four AE sensors were attached along the beam surface at critical locations, focusing 

on regions where high tensile or shear stresses and crack development were expected (Figure 

4). AE signals were continuously recorded during the entire loading process.  

The following AE parameters were extracted for each event: amplitude, rise time, duration, 

counts, energy and mean frequency, among others. These features characterize the AE signals 

of the loading process and material response and provide critical information for ML-based 

classification. 

To reduce noise and ensure data quality, the pre-processing procedure included signal 

filtering and thresholding to remove spurious events caused by external or non-relevant 

sources. After pre-processing, 73,895 significant AE events were obtained for model training 

and validation. 
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Figure 4: RC beam with AE sensors placement and final cracking pattern. 

3.3 Multilayer Perceptron Neural Network 

A MLP neural network was implemented to classify AE signals into two categories: 

cracking and non-cracking. The MLP architecture consisted of one input layer, two hidden 

layers, and one output layer (Figure 5). 

The model training process included: 

 Forward propagation: AE feature vectors were passed through the network layers. 

 Error calculation: The difference between predicted and actual labels was 

computed. 

 Backpropagation: Weights and biases were updated using gradient descent to 

minimize classification error. 

 Iteration: The process was repeated until convergence. 

Seventy percent of the AE dataset was used for training, while the remaining thirty percent 

was reserved for testing. Performance metrics included accuracy, precision, recall, and F1-

score. 

Figure 5: Schematic example of MLP neural network architecture. Source: AIML.com Research. 

4 RESULTS 

4.1 AE Signal Analysis 

During the four-point bending test, AE signals were continuously recorded, capturing the 

evolution of damage in the reinforced concrete beam. Figure 6 shows the temporal 

distribution of AE events from one representative channel during a full loading cycle. 
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Meanwhile, evolution of AE cumulated events across different channels is displayed in Figure 

7. Most AE events occurred during the loading rising branch of each cycle and constant 

maximum load stage, consistent with the initiation and propagation of cracks. Signals in the 

descending branch were limited, corresponding to structural relaxation and minor frictional 

events. 

 

Figure 6: (a) Evolution of the cracking pattern with load levels (LL#), as observed through visual inspection. (b) 

Loading procedure (top) represented by the red line, with two repetitions (A and B) at each load level, and 

corresponding AE event amplitudes; (bottom) detail for LL2 cycle B, showing correlation with the applied load. 

 

Figure 7: Temporal evolution (in sec) of cumulative AE events across different channels during the complete 

loading procedure, with the applied load (in kgf) shown as a black line. 

The extracted AE parameters exhibited clear trends correlating with load increase. High-

amplitude and high-energy events were associated with macrocracking, while lower 

amplitude events corresponded to microcracking (Figure 8). These trends confirm the 

suitability of AE monitoring to detect and characterize cracking in real time. 
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Figure 8: Scatter plot of AE amplitude vs. applied load, highlighting cracking events. 

4.2 MLP Model Performance 

As outlined previously, the MLP neural network was trained to classify AE signals into 

cracking and non-cracking events. Training and testing were conducted using 70% and 30% 

of the dataset, respectively. The model achieved high predictive performance, as summarized 

in Figure 9. 

 

         

Figure 9: Performance metrics: Accuracy (left) and Precision, Recall and F1-score (right). 

 

Figure 10: Confusion matrix of MLP classification results. 
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minimal, indicating that the model effectively distinguished cracking from non-cracking AE 

events. These results demonstrate the MLP’s capability to handle large volumes of AE data 
while maintaining high accuracy, offering a practical approach for automated SHM. 

5 DISCUSSION 

The combination of AE monitoring and MLP classification enables real-time detection of 

crack initiation and propagation in reinforced concrete beams. The strong correlation 

observed between AE parameters and structural damage confirms that AE signals contain 

sufficient information to characterize cracking processes. The proposed methodology offers 

several advantages over conventional NDT approaches. Continuous monitoring through AE 

sensors allows damage detection without interrupting structural operation, while automated 

analysis based on MLP reduces the reliance on manual interpretation and enhances both the 

speed and reliability of decision-making. The method also demonstrates high sensitivity, as 

even microcracking events can be detected, providing an early warning of potential failure. 

These findings are consistent with previous studies demonstrating the feasibility of applying 

ML to AE signal classification—such as the use of convolutional neural network for crack 

detection in concrete—and further highlight the potential for scaling this approach to larger 

structures and real-world applications. Nonetheless, certain limitations remain. These include 

the requirement for high-quality AE data and the need to optimize sensor placement in 

structures with complex geometries. 

6 CONCLUSIONS 

In this study, a full-scale reinforced concrete beam was tested under controlled laboratory 

loading and continuously monitored using AE. The recorded signals were parameterized and 

processed through a MLP neural network specifically developed and trained to classify AE 

events into cracking and non-cracking categories. The dataset was split into 70% for training 

and 30% for validation, ensuring robust model evaluation. 

This work demonstrates the successful integration of AE monitoring and ML techniques 

for structural health assessment. The main findings are as follows: 

 

 AE monitoring effectively captured crack initiation and propagation, providing 

real-time insight into the structural behavior of reinforced concrete. 

 The MLP neural network achieved high accuracy (> 98%) in distinguishing 

cracking from non-cracking events, with Precision, Recall, and F1-Score all 

exceeding 97%. 

 AE parameters showed strong correlation with applied load, confirming their 

potential as qualitative indicators of structural integrity. 

 The combined AE/ML methodology enables continuous, non-invasive, and 

automated monitoring, offering early warning of potential failures not easily 

detected by visual inspection or periodic NDT methods. 

7 FUTURE WORK 

Several avenues for further research are proposed: 

 Applying the AE/ML methodology to larger and more geometrically complex 

structures, such as bridges or nuclear containment elements, to validate scalability 

and robustness. 

 Combining AE monitoring with other non-destructive evaluation methods (e.g., 

ultrasonic pulse velocity) to enhance damage detection accuracy and localization. 
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 Developing fully automated SHM systems capable of providing real-time alerts and 

integrating predictive analytics for proactive maintenance. 

 Investigating optimal sensor layouts and exploring more advanced neural network 

architectures, such as deep learning models, to improve classification performance 

in field conditions. 

In summary, the integration of AE and AI-based analysis represents a promising approach 

for structural health monitoring, providing early detection of damage, improving safety, and 

supporting data-driven decision-making in civil infrastructure management. 
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