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Resumen. Este estudio propone un nuevo enfoque para la deteccién temprana de diabetes mellitus ti-
po 2 mediante el andlisis automatizado de sefiales fisiologicas. El método desarrollado se basa en la
construccién de un espacio de caracteristicas geométricas generado a partir de pardmetros extraidos de
seflales de pacientes, y la aplicacién posterior de algoritmos de aprendizaje automatico sobre dicho espa-
cio. Los resultados experimentales demuestran una elevada eficacia diagndstica, con valores de F1-score
que alcanzan 1.000 en las mejores configuraciones, respaldados por métricas complementarias de sensi-
bilidad (en el rango [0.960-1.000]), especificidad (igual o superior a 0.984) y precisiéon balanceada (igual
o mayor a 0.983). Estos resultados confirman que la técnica propuesta ofrece un sistema novedoso a la
vez que computacionalmente eficiente para la identificacion de patrones asociados a la diabetes mellitus
tipo 2.

Keywords: amplitud, 4ngulo de zenit, factor de forma, diferenciacion de sefiales

Abstract. This study proposes a new approach for the early detection of type 2 diabetes mellitus through
the automated analysis of physiological signals. The method developed is based on the construction of a
geometric feature space generated from parameters extracted from patient signals, and the subsequent ap-
plication of machine learning algorithms on this space. Experimental results demonstrate high diagnostic
efficiency, with Fl-score values reaching 1.000 in the best configurations, supported by complementary
metrics of sensitivity (ranging [0.960-1.000]), specificity (equal to or higher than 0.984) and balanced
accuracy (equal to or higher than 0.983). These results confirm that the proposed technique offers a robust
and reliable system for the identification of patterns associated with type 2 diabetes mellitus.
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1. INTRODUCCION

La clasificacion de la diabetes ha pasado de incluir inicamente dos tipos (tipo 1 y tipo 2) a
reconocer mas de 50 subcategorias con distintos origenes y vinculaciones con otras patologias.
En particular la diabetes tipo 2 surge debido a una combinacién de resistencia a la insulina y
produccién insuficiente de esta hormona, condiciones influenciadas por el sobrepeso, la inacti-
vidad fisica y el envejecimiento. La obesidad, que antes se asociaba mds a los adultos, es ahora
frecuente en personas de todas las edades, lo que contribuye a la superposicion de factores entre
la diabetes tipo 1 y tipo 2. Por otro lado, la diabetes gestacional ocurre exclusivamente durante
el embarazo y puede ser un indicio de un futuro diagndstico de diabetes tipo 2.

Los estudios en diversas poblaciones han revelado inconsistencias en las pruebas de detec-
cion de la enfermedad. Entre quienes cumplen los criterios de la prueba de hemoglobina glico-
silada (HbAIc), solo entre el 27 % y el 98 % también cumplen los de la glucosa plasmadtica, y
de los que cumplen estos tltimos, apenas entre el 17 % y el 78 % coinciden con los valores de
la prueba HbA Ic. Estas diferencias se deben a que cada examen analiza distintos aspectos de la
hiperglucemia, los cuales pueden variar segin el paciente (Genuth et al. (2018)).

A pesar de que los algoritmos de machine learning (ML) han demostrado tener un conside-
rable potencial predictivo, todavia tienen limitaciones en el caso de la diabetes mellitus tipo 2.A
pesar de que los modelos de ML presentan una discriminacion sobresaliente (AUROC ~ 0,88),
el desempefio alin no es adecuado para cambiar la percepcion del riesgo futuro en los pacientes
con seguridad. Los autores Abhari et al. (2023) subrayan que los modelos de ML, a pesar de ser
mads flexibles, necesitan un aumento significativo en su capacidad de generalizacion y precision;
por otro lado, los métodos tradicionales tienen una validez externa baja y dependen de un nu-
mero reducido de variables. Se destaca la relevancia de crear algoritmos mds solidos y eficaces
—por ejemplo, utilizando estructuras avanzadas como redes recurrentes o transformadores—
con el fin de mejorar la deteccion temprana y la categorizacion de la diabetes tipo 2 en diversas
situaciones poblacionales.

Los autores Kodama et al. (2022) indican que, a pesar de que los algoritmos de aprendizaje
profundo, las redes neuronales, los algoritmos como Random Forest y las maquinas de soporte
vectorial (SVM) son mds eficaces que los métodos estadisticos clasicos, su desempefio esta
muy vinculado con la representatividad y la calidad de los datos utilizados en el entrenamiento.
Asimismo, numerosas estrategias actuales se fundamentan en grupos limitados de variables que
no representan el cardcter dindmico y no lineal de esta patologia. Por lo tanto, los escritores
subrayan la importancia de crear métodos de clasificacion mas sélidos y comprensibles, que
sean aptos para incluir sefiales complejas (como las series de glucemia en el tiempo) y que
contribuyan a perfeccionar la identificaciéon temprana de la enfermedad y su caracterizacion
precisa.

La deteccion temprana de la diabetes mellitus tipo 2 es fundamental por su caracter silencio-
so en etapas iniciales y su potencial para desarrollar complicaciones graves como neuropatias,
nefropatias, retinopatias y enfermedades cardiovasculares cuando no se controla. Al diagnos-
ticarse a tiempo mediante pruebas sencillas (glucemia en ayunas o HbAlc), especialmente en
poblaciones de riesgo (mayores de 45 afos, personas con obesidad o antecedentes familiares),
se puede intervenir con modificaciones en el estilo de vida -dieta equilibrada, actividad fisica
regular y control de peso- que en muchos casos logran revertir la condicion antes de requerir
tratamiento farmacoldgico. Esta prevencion no solo mejora significativamente la calidad de vida
del paciente, sino que reduce sustancialmente los costos asociados al manejo de complicaciones
crénicas, convirtiendo a la deteccién precoz en una estrategia clave de salud publica (American
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Diabetes Association (2023), Herman et al. (2015).)

1.1. Meétodo

Mediante el algoritmo propuesto en Garcia Blesa et al. (2025), se procesa la base de datos de
sefales discretas para obtener el GFS, siguiendo un esquema general sencillo. Como se observa
en la figura 1, este espacio se emplea luego como data-set en algoritmos de machine learning.
A continuacién se da una breve flujo grama del trabajo desarrollado. El primer elemento rele-

Sefiales Glucemia —->| Algoritmo propuesto | i Resultados i
| 1

| Sefial normal 1 | * fmmsmmmmmsooooes '
= GFS i i

| Sefial normal 2 | Machine i -F1-Score |
,,,,,,,,,,,,,,,,,, Learning | - Métricas |
Sefial con Diabetes 1 GFS GFS i |

I I Grupo normal Grupo Diabetes B ' !
| Sefial con Diabetes 2 | | '

Figura 1: Esquema general del método.

vante para definir el GFS es la amplitud de la sefial S. Esta se calcula considerando los valores
extremos min(S) y maz(S) de la siguiente manera:

A(S) = max(S) — min(9). (1)

El segundo elemento, denominado dngulo Zenith (), toma como pardmetro el promedio de los
valores de S. Este se calcula del siguiente modo:

© = arctan (0_519) = arctan(2 — 2p), (2)
)
donde p es el promedio de los valores de S.

Como tercer parametro, el Factor de Forma cuantifica la distribucién de picos y valles en S.
Considerando una sefial discreta S' de longitud n, el procedimiento consiste en: 1) ordenar de
menor a mayor los valores de .S, y 2) construir el vector O con los indices resultantes. Luego si
Pn =A{q1,q,.-.,q.} es el conjunto de los primeros n nimeros primos, el factor de forma se
define como sigue:

F(s) =] a 3)
=1

donde F(S) € N. Mediante el Teorema Fundamental de la Aritmética, se puede descomponer
este pardmetro para obtener la configuracion de valles y picos de S.

Dada S de longitud n, y dada una dimensién de embedding d < n, se definen los siguientes
segmentos s de longitud d derivados de S:

S; = {aiyai+17"‘7ai+d_1}’ (4)

donde s; C S,ei =1,2,...n—d+1. Cabe destacar que los segmentos s; son sefiales discretas,
permitiendo asi la implementacion de los métodos anteriormente descritos. Cada s; (definido
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en (4)) queda univocamente determinado por la tripleta formada por las ecuaciones (1), (2)
y (3):
si = (A(s1), (i), F(si))- (5)

Simplificando la notacién, se escribe A; = A(s;), ¢; = ©(s;), y Fi = F(s;). Sustituyendo en
la expresion (5), se define el vector de caracteristicas v;:

v; = (Ai, i, Fi). (6)

Con el objetivo de obtener un GFS reducido, se discretizan las dos primeras componentes de
v;. Este mecanismo produce, eventualmente, vectores repetidos. Las dos primeras componentes
del vector v; —amplitud y d4ngulo de Zenith— son valores reales, por lo que se considera que la
probabilidad de su ocurrencia es muy baja. Para aumentar esta probabilidad, ambos pardmetros
se discretizan, y los valores calculados se asignan a un rango discreto de tamafio arbitrario.
Como criterio de célculo se busca el menor valor de discretizacion que logre la mejor clasifica-
cion, dado que cuanto menor sea t, menor serd la cantidad de datos y con ello menor tiempo de
proceso.

El vector de caracteristicas con los pardmetros amplitud y dngulo de Zenith discretizados
se redefine como v; = (A';,¢';, F;), donde A’; es la amplitud discreta de A;, asi como ¢/,
corresponde al valor discreto de ;. El conjunto de todos estos vectores es V' = {v; : i =
1,2,...,n—d+1}.

Con el propésito de eliminar la informacién redundante, el conjunto V' se reduce eliminando
los elementos repetidos. Asi, se considera el conjunto V' = {v}, v}, ..., v, }, donde v; € V para
t=1,2,...,k,yparatodo,jentre 1 y k, tal que ¢ # j, se cumple que v; # v;.

Este conjunto, compuesto por vectores unicos, tiene cardinalidad #V’ < #V. Es relevante
conocer la frecuencia en V' de los vectores de V’. Parai = 1,2, ..., k, se define la frecuencia
F; = #{v € V : v = v;}. Finalmente se tiene el conjunto W definido de la siguiente manera:

W=A{(,F):i=1,2,...,k}, (7)
conteniendo los vectores de V' y sus respectivas frecuencias en V. Asi, el conjunto W es el
GFS.Si S = {54, 52,...,S;:} es un conjunto de sefales, el conjunto W se asocia con S como
su GFS.

El posprocesamiento de los GFS’s se realiz6 utilizando los siguientes modelos de ML, am-
pliamente difundidos en la literatura Murphy (2012). Support Vector Classifier (SVC): Clasifi-
cador basado en hiperplanos; configuracién: kernel = linear, C' = 0,025 (lineal), v = 2,C' =1
(no lineal). Gaussian Process Classifier (GPC): Clasificador probabilistico basado en procesos
gaussianos; configuracién: 1,0 x RBF(1,0). Decision Tree Classifier (DTC): Arbol de decision;
configuracion: max_depth = 5. Random Forest Classifier (RFC): Ensamble de arboles con
voto mayoritario; configuracion: max_depth = 5, n_estimators = 10, max_features = 1. Multi-
Layer Perceptron Classifier (MLP): Red neuronal multicapa; configuracion: o = 1, max_iter =
1000. AdaBoost Classifier (AdaBoost): Ensamble de clasificadores débiles en un modelo fuerte.
Gaussian Naive Bayes (GNB): Clasificador probabilistico que asume independencia condicional
entre caracteristicas. Logistic Regression (LR): Modelo de regresion para clasificacion binaria.
K-Neighbors Classifier (KNN): Clasificador por voto mayoritario de los £ = 3 vecinos mds
cercanos.

Se calcularon los siguientes parametros estdndar para cada modelo: F1-score, precision ba-
lanceada, sensibilidad, especificidad, valores de PP, NP y tiempo de procesamiento. Adicional-
mente se utilizd una validacion cruzada 5-Fold para reducir sesgos (Zihlmann et al. (2017)).
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Esta configuracion de k-fold utiliza el 20 % de los datos del GFS para test y el 80 % para prue-
ba, rotando este procedimiento hasta que todos los folds han sido utilizados como conjunto de
prueba. Se aclaré este punto en el documento (James et al. (2021); Géron (2022)). Se calcu-
laron F'li.in ¥ F'lies; para evaluar el posible sobre-ajuste del modelo. Se considera ausencia
de sobre-ajuste cuando la diferencia F'liin — F'liest < 0,05, siguiendo criterios empiricos de
brecha de generalizacion Carrell et al. (2022).
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Figura 2: Sefales de glucosa. La curva azul corresponde a un caso de test T2DM negativo, y la roja a un caso de
test T2DM positivo o de paciente con diabtetes Mellitus tipo 2. Los valores corresponden a mediciones tomadas
cada 5 minutos durante un total de 24 horas.

La base de datos utilizada se obtuvo de Rodriguez de Castro et al. (2017), la cual incluy6
a 208 participantes reclutados en la unidad de hipertension arterial y riesgo cardiovascular del
Hospital Universitario de Mdstoles (Madrid) entre enero de 2012 y mayo de 2015. Los sujetos
cumplian los siguientes requisitos: tener entre 18 y 85 afios, presentar diagndstico de hiperten-
sidén arterial primaria y no tener antecedentes de diabetes mellitus ni recibir medicacién. Dado
que algunas sefiales presentaban lagunas o baches de valores de glucosa, se excluyeron del ana-
lisis, dando un total de 16 sefiales con test T2DM positivo de diabetes mellitus tipo 2, y 158
de sefiales con test T2DM negativo. Las sefiales fueron etiquetadas como "NOR’ para represen-
tar sefiales no patoldgicas —referidas aqui como ’sefales normales’— y 'DIA’ para sefiales que
presentan test T2DM positivo. Los valores corresponden a mediciones tomadas cada 5 minutos
durante 24 horas. La figura 2 representa la grafica de dos de las sefiales analizadas.

Los pardmetros iniciales para nuestro algoritmo fueron definidos arbitrariamente en dos
conjuntos: el conjunto D correspondiente a los valores de la dimension de embedding cu-
yas cantidades son D = {3,4,5,6}, y el conjunto 7' de factores de discretizaciéon cu-
yos valores son 7' = {10, 20, 30,50}. Denotamos como |[d, ] al par de pardmetros de en-
trada. Se calcularon un total de 16 casos combinando los elementos de ambos conjuntos:
[3,10],...,[3,50],[4,10],...,[4,50],[5,10],...,[5,50],[6,10],...,[6, 50], generando un espa-
cio de caracteristicas respectivo para cada caso. Luego, se aplicaron los algoritmos ML (10
algoritmos en total) a cada espacio de caracteristicas obteniendo un total de 160 resultados.

2. RESULTADOS

De las sefales analizadas se obtuvo un total de 16 espacios de caracteristicas. Se puede
observar que, a pesar de que la cantidad de sefiales NOR y DIA es dispar, la cantidad de vectores
caracteristicos encontrada no conserva dichas diferencias. La tabla 1 muestra la cantidad de
vectores caracteristicos obtenidos para cada caso [d, t].
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d t Cant. de vectores Cant. de vectores

NOR DIA
3 10 13 18
3 20 27 23
3 30 28 26
3 50 42 59
4 10 33 49
4 20 66 56
4 30 80 111
4 50 131 128
5 10 84 82
5 20 124 119
5 30 90 93
5 50 186 265
6 10 195 191
6 30 204 304
6 50 281 282

Tabla 1: Cantidad de vectores caracteristicos encontrados en cada GFS.

De los 160 casos analizados, 22 de ellos obtuvo F1-score por encima de 0,9. En dicho grupo
se encuentran s6lo dos modelos: AdaBoost y Decision Tree. La tabla 2 presenta los 10 mejo-
res resultados segtin el valor de FI-score. Se destaca que la dimensién de embedding d = 4
ofrece el mayor rendimiento, como se detalla en la tabla 3. En particular, la configuracion Ada-
Boost con d = 4y t = 20 alcanza valores maximos en todas las métricas evaluadas: FI-score,
precision balanceada, sensibilidad y especificidad. Aunque las configuraciones con d = 4 man-
tienen un F/-score superior a 0,989, un incremento a d = 6 conlleva una ligera disminucién en
el rendimiento, con valores cercanos a 0,985. El algoritmo AdaBoost iguala el desempefio del
Decision Tree en la configuracién [5, 10] (F1-scorede0,98781), pero lo supera en otras combi-
naciones. Los modelos de las tablas 2 y 3 muestran ademas alta especificidad (mayor o igual
a 0.984) y valores predictivos consistentes en los pardmetros PP (valor predictivo positivo) y
NP (valor predictivo negativo) con valores mayores o iguales a 0.98, aunque con mayor varia-
bilidad en sensibilidad (rango: 0.960-1.000). Los resultados sugieren que valores intermedios
de ¢ (20-30) optimizan el balance entre sensibilidad y especificidad, superando el rendimiento
de ¢ = 50 en la misma dimension de embedding. La diferencia entre las métricas Fl-train y
F1-test mostr6 valores menores a di f — F'1 < 0,05 lo que indica que no hay sobre ajuste para
los casos informados. A modo de ejmplo se muestran las curvas aprendizaje del caso AdaBoost
[d,t] = [6,20] en la figura 3.

K Modelo F1-Score Balanced Acc Sensitivity Specificity PP Values NP Values Fl-train Fl-test dif-F1  Overfitting

D

4 20 AdaBoost 1 1 1 1 1 1 1 1 0 NO
4 50 AdaBoost 0.99223 0.99231 1 0.98462 0.9849 0.98462 1 0.99223  0.00777 NO
4 30 AdaBoost 0.9894 0.98661 0.97321 1 1 1 1 0.9894  0.0106 NO
5 10 AdaBoost 0.98781 0.9875 0.975 1 1 1 1 0.98781 0.01219 NO
5 10 Decision Tree  0.98781 0.9875 0.975 1 1 1 1 0.98781 0.01219 NO
6 10 AdaBoost 0.98706 0.98798 0.99592 0.98004 0.97894 0.98004 1 0.98706 0.01294 NO
6 20 AdaBoost 0.98522 0.9856 0.98062 0.99059 0.98987 0.99059  0.99199 0.98522 0.00677 NO
6 30 AdaBoost 0.98416 0.98036 0.96073 1 1 1 0.99556  0.98416 0.0114 NO
5 30 AdaBoost 0.98364 0.98392 0.97895 0.98889 0.98947 0.98889 1 0.98364 0.01636 NO
5 20 AdaBoost 0.98359 0.98414 0.98462 0.98367 0.984 0.98367 1 0.98359 0.01641 NO

Tabla 2: Resultados de clasificacién de los grupos NOR y DIA.
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D K Modelo F1-Score Balanced Acc Sensitivity Specificity PP Values NP Values Fl-train Fl-test dif-F1  Overfitting
4 10 AdaBoost 0.96366 0.96349 0.92698 1 1 1 1 0.96366 0.03634 NO
4 20 AdaBoost 1 1 1 1 1 1 1 1 0 NO
4 30 AdaBoost 0.9894 0.98661 0.97321 1 1 1 1 0.9894  0.0106 NO
4 50 AdaBoost 0.99223 0.99231 1 0.98462 0.9849 0.98462 1 0.99223  0.00777 NO

Tabla 3: Resultados de clasificacién de los grupos NOR y DIA para el caso de dimensién de embedding 4.
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Figura 3: Curvas de aprendizaje correspondientes a la evolucion de la precision de entrenamiento y la precision de
testeo para el caso AdaBoost [d, t] = [6, 20].

3. CONCLUSIONES Y DISCUSION

El uso del modelo GFS junto al modelo AdaBoost resulté en una combinacion exitosa en
la clasificacion de las sefiales de glucemia ya que alrededor del 13,75 % de las combinacio-
nes ([d,t], ModeloM L) calculadas arrojaron resultados por encima de 0,9 en sus valores de
Fl-score. En particular para los datos de entrada ([4, ...], AdaBoost) se vio que que hay una
clasificacién consistente en todos los casos analizados, lo que implica una coherencia en el
mecanismo de estos modelos.

A pesar de que hay una diferencia sustantiva entre la cantidad de sefiales normales y dia-
béticas que puede dar lugar a un desbalanceo de los resultados dado que hay mucha mas in-
formacion sobre un grupo que sobre otro, este aspecto queda resuelto por el algoritmo GFS al
quitar la informacion redundante. Esto queda evidenciado por los resultados mostrados en la
tabla de 1 donde, incluso hay casos en los que las sefiales diabéticas contienen una mayor can-
tidad de vectores. Por este motivo resulta importante destacar que el algoritmo GFS fue capaz
de compensar el desbalanceo presente en la base de datos utilizada.

Es posible que exista alguna configuraciéon de hiperpardmetros en algunos modelos descar-
tados, que mejore los resultados y se espera que asi ocurra. Eso requiere de un estudio detallado
del uso del GFS en cada uno de los algoritmos ML. En esta primera instancia se pudo ver el
comportagmiento de los modelos ML, junto con el espacio GFS en la clasificacion de las se-
fales dadas encontrando que el modelo AdaBoost responde bien para todas las configuraciones
iniciales [d, t].

De manera general resultados obtenidos refuerzan la idea de que la combinacion de aprendi-
zaje automdtico con representaciones geométricas de esta clase de sefiales permite una clasifi-
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cacion eficiente de datos de glucemia, con AdaBoost sobresaliendo como un modelo especial-
mente efectivo en este contexto.

4. TRABAJOS FUTUROS

La meta principal fue alcanzar la clasificacion més alta posible. Se eligi6 el criterio de dis-
cretizacion basdndose en este resultado, utilizando el factor de discretizacién més pequefio que
mejora la clasificacion. Por ende, todavia no se ha puesto en marcha una funcién de costo com-
binada ni una optimizacion de multiples objetivos. Este aspecto se considera importante y serd
tratado en futuros trabajos.

En futuras etapas de este trabajo se plantea retomar el andlisis del conjunto de datos prove-
nientes del espacio GFS, poniendo especial atencidn en la relacion entre dicho espacio inter-
medio y el espacio original de las sefiales de glucemia. El verdadero desafio no radica en el
andlisis dentro del espacio GFS, sino en comprender cémo la informacién representada en él
se vincula con el dominio original, que es el que realmente interesa para el desarrollo de un
sistema clasificador capaz de detectar casos de Diabetes Mellitus tipo 2.

El trabajo de investigacion actual todavia estd en proceso y un propdsito importante es el de
alcanzar una adecuada capacidad de generalizacion del modelo, para que el sistema sea capaz
de reaccionar con eficacia ante sefales de glucemia que no estén incluidas en el conjunto de
entrenamiento. Si todas las sefiales de glucemia se utilizan en la construccion del espacio GFS,
el algoritmo logra una excelente clasificacion de las sefiales disponibles, lo que demuestra su
capacidad de aprendizaje dentro del conjunto analizado. Sin embargo, al no haber sefiales exter-
nas al proceso de entrenamiento, el modelo no puede ain demostrar su capacidad de extrapolar
y predecir correctamente ante sefiales nunca vistas. Por ello, serd conveniente incorporar es-
trategias de validacion mads rigurosas que permitan evaluar y fortalecer su capacidad predictiva
frente a nuevos datos.
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