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Resumen. Este estudio propone un nuevo enfoque para la detección temprana de diabetes mellitus ti-
po 2 mediante el análisis automatizado de señales fisiológicas. El método desarrollado se basa en la
construcción de un espacio de características geométricas generado a partir de parámetros extraídos de
señales de pacientes, y la aplicación posterior de algoritmos de aprendizaje automático sobre dicho espa-
cio. Los resultados experimentales demuestran una elevada eficacia diagnóstica, con valores de F1-score
que alcanzan 1.000 en las mejores configuraciones, respaldados por métricas complementarias de sensi-
bilidad (en el rango [0.960–1.000]), especificidad (igual o superior a 0.984) y precisión balanceada (igual
o mayor a 0.983). Estos resultados confirman que la técnica propuesta ofrece un sistema novedoso a la
vez que computacionalmente eficiente para la identificación de patrones asociados a la diabetes mellitus
tipo 2.
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Abstract. This study proposes a new approach for the early detection of type 2 diabetes mellitus through
the automated analysis of physiological signals. The method developed is based on the construction of a
geometric feature space generated from parameters extracted from patient signals, and the subsequent ap-
plication of machine learning algorithms on this space. Experimental results demonstrate high diagnostic
efficiency, with F1-score values reaching 1.000 in the best configurations, supported by complementary
metrics of sensitivity (ranging [0.960–1.000]), specificity (equal to or higher than 0.984) and balanced
accuracy (equal to or higher than 0.983). These results confirm that the proposed technique offers a robust
and reliable system for the identification of patterns associated with type 2 diabetes mellitus.
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1. INTRODUCCIÓN

La clasificación de la diabetes ha pasado de incluir únicamente dos tipos (tipo 1 y tipo 2) a
reconocer más de 50 subcategorías con distintos orígenes y vinculaciones con otras patologías.
En particular la diabetes tipo 2 surge debido a una combinación de resistencia a la insulina y
producción insuficiente de esta hormona, condiciones influenciadas por el sobrepeso, la inacti-
vidad física y el envejecimiento. La obesidad, que antes se asociaba más a los adultos, es ahora
frecuente en personas de todas las edades, lo que contribuye a la superposición de factores entre
la diabetes tipo 1 y tipo 2. Por otro lado, la diabetes gestacional ocurre exclusivamente durante
el embarazo y puede ser un indicio de un futuro diagnóstico de diabetes tipo 2.

Los estudios en diversas poblaciones han revelado inconsistencias en las pruebas de detec-
ción de la enfermedad. Entre quienes cumplen los criterios de la prueba de hemoglobina glico-
silada (HbA1c), solo entre el 27 % y el 98 % también cumplen los de la glucosa plasmática, y
de los que cumplen estos últimos, apenas entre el 17 % y el 78 % coinciden con los valores de
la prueba HbA1c. Estas diferencias se deben a que cada examen analiza distintos aspectos de la
hiperglucemia, los cuales pueden variar según el paciente (Genuth et al. (2018)).

A pesar de que los algoritmos de machine learning (ML) han demostrado tener un conside-
rable potencial predictivo, todavía tienen limitaciones en el caso de la diabetes mellitus tipo 2.A
pesar de que los modelos de ML presentan una discriminación sobresaliente (AUROC ∼ 0,88),
el desempeño aún no es adecuado para cambiar la percepción del riesgo futuro en los pacientes
con seguridad. Los autores Abhari et al. (2023) subrayan que los modelos de ML, a pesar de ser
más flexibles, necesitan un aumento significativo en su capacidad de generalización y precisión;
por otro lado, los métodos tradicionales tienen una validez externa baja y dependen de un nú-
mero reducido de variables. Se destaca la relevancia de crear algoritmos más sólidos y eficaces
—por ejemplo, utilizando estructuras avanzadas como redes recurrentes o transformadores—
con el fin de mejorar la detección temprana y la categorización de la diabetes tipo 2 en diversas
situaciones poblacionales.

Los autores Kodama et al. (2022) indican que, a pesar de que los algoritmos de aprendizaje
profundo, las redes neuronales, los algoritmos como Random Forest y las máquinas de soporte
vectorial (SVM) son más eficaces que los métodos estadísticos clásicos, su desempeño está
muy vinculado con la representatividad y la calidad de los datos utilizados en el entrenamiento.
Asimismo, numerosas estrategias actuales se fundamentan en grupos limitados de variables que
no representan el carácter dinámico y no lineal de esta patología. Por lo tanto, los escritores
subrayan la importancia de crear métodos de clasificación más sólidos y comprensibles, que
sean aptos para incluir señales complejas (como las series de glucemia en el tiempo) y que
contribuyan a perfeccionar la identificación temprana de la enfermedad y su caracterización
precisa.

La detección temprana de la diabetes mellitus tipo 2 es fundamental por su carácter silencio-
so en etapas iniciales y su potencial para desarrollar complicaciones graves como neuropatías,
nefropatías, retinopatías y enfermedades cardiovasculares cuando no se controla. Al diagnos-
ticarse a tiempo mediante pruebas sencillas (glucemia en ayunas o HbA1c), especialmente en
poblaciones de riesgo (mayores de 45 años, personas con obesidad o antecedentes familiares),
se puede intervenir con modificaciones en el estilo de vida -dieta equilibrada, actividad física
regular y control de peso- que en muchos casos logran revertir la condición antes de requerir
tratamiento farmacológico. Esta prevención no solo mejora significativamente la calidad de vida
del paciente, sino que reduce sustancialmente los costos asociados al manejo de complicaciones
crónicas, convirtiendo a la detección precoz en una estrategia clave de salud pública (American

H.M. GARCIA BLESA, J. VOROBIOFF, W.E. LEGNANI1430

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Diabetes Association (2023), Herman et al. (2015).)

1.1. Método

Mediante el algoritmo propuesto en García Blesa et al. (2025), se procesa la base de datos de
señales discretas para obtener el GFS, siguiendo un esquema general sencillo. Como se observa
en la figura 1, este espacio se emplea luego como data-set en algoritmos de machine learning.
A continuación se da una breve flujo grama del trabajo desarrollado. El primer elemento rele-
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Figura 1: Esquema general del método.

vante para definir el GFS es la amplitud de la señal S. Esta se calcula considerando los valores
extremos min(S) y max(S) de la siguiente manera:

A(S) = máx(S)−mı́n(S). (1)

El segundo elemento, denominado ángulo Zenith (φ), toma como parámetro el promedio de los
valores de S. Éste se calcula del siguiente modo:

φ = arctan

(

1− p

0,5

)

= arctan(2− 2p), (2)

donde p es el promedio de los valores de S.
Como tercer parámetro, el Factor de Forma cuantifica la distribución de picos y valles en S.

Considerando una señal discreta S de longitud n, el procedimiento consiste en: 1) ordenar de
menor a mayor los valores de S, y 2) construir el vector O con los índices resultantes. Luego si
Pn = {q1, q2, . . . , qn} es el conjunto de los primeros n números primos, el factor de forma se
define como sigue:

F(S) =
n
∏

i=1

qoii . (3)

donde F(S) ∈ N. Mediante el Teorema Fundamental de la Aritmética, se puede descomponer
este parámetro para obtener la configuración de valles y picos de S.

Dada S de longitud n, y dada una dimensión de embedding d < n, se definen los siguientes
segmentos s de longitud d derivados de S:

si = {ai, ai+1, . . . , ai+d−1}, (4)

donde si ⊂ S, e i = 1, 2, . . . n−d+1. Cabe destacar que los segmentos si son señales discretas,
permitiendo así la implementación de los métodos anteriormente descritos. Cada si (definido
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en (4)) queda unívocamente determinado por la tripleta formada por las ecuaciones (1), (2)
y (3):

si 7→ (A(si), φ(si),F(si)). (5)

Simplificando la notación, se escribe Ai = A(si), φi = φ(si), y Fi = F(si). Sustituyendo en
la expresión (5), se define el vector de características vi:

vi = (Ai, φi,Fi). (6)

Con el objetivo de obtener un GFS reducido, se discretizan las dos primeras componentes de
vi. Este mecanismo produce, eventualmente, vectores repetidos. Las dos primeras componentes
del vector vi –amplitud y ángulo de Zenith– son valores reales, por lo que se considera que la
probabilidad de su ocurrencia es muy baja. Para aumentar esta probabilidad, ambos parámetros
se discretizan, y los valores calculados se asignan a un rango discreto de tamaño arbitrario.
Como criterio de cálculo se busca el menor valor de discretización que logre la mejor clasifica-
ción, dado que cuanto menor sea t, menor será la cantidad de datos y con ello menor tiempo de
proceso.

El vector de características con los parámetros amplitud y ángulo de Zenith discretizados
se redefine como vi = (A′

i, φ
′

i,Fi), donde A′

i es la amplitud discreta de Ai, así como φ′

i

corresponde al valor discreto de φi. El conjunto de todos estos vectores es V = {vi : i =
1, 2, . . . , n− d+ 1}.

Con el propósito de eliminar la información redundante, el conjunto V se reduce eliminando
los elementos repetidos. Así, se considera el conjunto V ′ = {v′1, v

′

2, . . . , v
′

k}, donde vi ∈ V para
i = 1, 2, . . . , k, y para todo i, j entre 1 y k, tal que i ̸= j, se cumple que vi ̸= vj .

Este conjunto, compuesto por vectores únicos, tiene cardinalidad #V ′ ≤ #V . Es relevante
conocer la frecuencia en V de los vectores de V ′. Para i = 1, 2, . . . , k, se define la frecuencia
Fi = #{v ∈ V : v = vi}. Finalmente se tiene el conjunto W definido de la siguiente manera:

W = {(v′i, Fi) : i = 1, 2, . . . , k}, (7)

conteniendo los vectores de V ′ y sus respectivas frecuencias en V . Así, el conjunto W es el
GFS. Si S = {S1, S2, . . . , St} es un conjunto de señales, el conjunto W se asocia con S como
su GFS.

El posprocesamiento de los GFS’s se realizó utilizando los siguientes modelos de ML, am-
pliamente difundidos en la literatura Murphy (2012). Support Vector Classifier (SVC): Clasifi-
cador basado en hiperplanos; configuración: kernel = linear, C = 0,025 (lineal), γ = 2, C = 1
(no lineal). Gaussian Process Classifier (GPC): Clasificador probabilístico basado en procesos
gaussianos; configuración: 1,0×RBF(1,0). Decision Tree Classifier (DTC): Árbol de decisión;
configuración: max_depth = 5. Random Forest Classifier (RFC): Ensamble de árboles con
voto mayoritario; configuración: max_depth = 5, n_estimators = 10,max_features = 1. Multi-

Layer Perceptron Classifier (MLP): Red neuronal multicapa; configuración: α = 1,max_iter =
1000. AdaBoost Classifier (AdaBoost): Ensamble de clasificadores débiles en un modelo fuerte.
Gaussian Naive Bayes (GNB): Clasificador probabilístico que asume independencia condicional
entre características. Logistic Regression (LR): Modelo de regresión para clasificación binaria.
K-Neighbors Classifier (KNN): Clasificador por voto mayoritario de los k = 3 vecinos más
cercanos.

Se calcularon los siguientes parámetros estándar para cada modelo: F1-score, precisión ba-
lanceada, sensibilidad, especificidad, valores de PP, NP y tiempo de procesamiento. Adicional-
mente se utilizó una validación cruzada 5-Fold para reducir sesgos (Zihlmann et al. (2017)).
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Esta configuración de k-fold utiliza el 20 % de los datos del GFS para test y el 80 % para prue-
ba, rotando este procedimiento hasta que todos los folds han sido utilizados como conjunto de
prueba. Se aclaró este punto en el documento (James et al. (2021); Géron (2022)). Se calcu-
laron F1train y F1test para evaluar el posible sobre-ajuste del modelo. Se considera ausencia
de sobre-ajuste cuando la diferencia F1train − F1test < 0,05, siguiendo criterios empíricos de
brecha de generalización Carrell et al. (2022).
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Figura 2: Señales de glucosa. La curva azul corresponde a un caso de test T2DM negativo, y la roja a un caso de
test T2DM positivo o de paciente con diabtetes Mellitus tipo 2. Los valores corresponden a mediciones tomadas
cada 5 minutos durante un total de 24 horas.

La base de datos utilizada se obtuvo de Rodriguez de Castro et al. (2017), la cual incluyó
a 208 participantes reclutados en la unidad de hipertensión arterial y riesgo cardiovascular del
Hospital Universitario de Móstoles (Madrid) entre enero de 2012 y mayo de 2015. Los sujetos
cumplían los siguientes requisitos: tener entre 18 y 85 años, presentar diagnóstico de hiperten-
sión arterial primaria y no tener antecedentes de diabetes mellitus ni recibir medicación. Dado
que algunas señales presentaban lagunas o baches de valores de glucosa, se excluyeron del aná-
lisis, dando un total de 16 señales con test T2DM positivo de diabetes mellitus tipo 2, y 158
de señales con test T2DM negativo. Las señales fueron etiquetadas como ’NOR’ para represen-
tar señales no patológicas –referidas aqui como ’señales normales’– y ’DIA’ para señales que
presentan test T2DM positivo. Los valores corresponden a mediciones tomadas cada 5 minutos
durante 24 horas. La figura 2 representa la gráfica de dos de las señales analizadas.

Los parámetros iniciales para nuestro algoritmo fueron definidos arbitrariamente en dos
conjuntos: el conjunto D correspondiente a los valores de la dimensión de embedding cu-
yas cantidades son D = {3, 4, 5, 6}, y el conjunto T de factores de discretización cu-
yos valores son T = {10, 20, 30, 50}. Denotamos como [d, t] al par de parámetros de en-
trada. Se calcularon un total de 16 casos combinando los elementos de ambos conjuntos:
[3, 10], . . . , [3, 50], [4, 10], . . . , [4, 50], [5, 10], . . . , [5, 50], [6, 10], . . . , [6, 50], generando un espa-
cio de características respectivo para cada caso. Luego, se aplicaron los algoritmos ML (10
algoritmos en total) a cada espacio de características obteniendo un total de 160 resultados.

2. RESULTADOS

De las señales analizadas se obtuvo un total de 16 espacios de características. Se puede
observar que, a pesar de que la cantidad de señales NOR y DIA es dispar, la cantidad de vectores
característicos encontrada no conserva dichas diferencias. La tabla 1 muestra la cantidad de
vectores característicos obtenidos para cada caso [d, t].
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d t Cant. de vectores Cant. de vectores
NOR DIA

3 10 13 18
3 20 27 23
3 30 28 26
3 50 42 59
4 10 33 49
4 20 66 56
4 30 80 111
4 50 131 128
5 10 84 82
5 20 124 119
5 30 90 93
5 50 186 265
6 10 195 191
6 30 204 304
6 50 281 282

Tabla 1: Cantidad de vectores característicos encontrados en cada GFS.

De los 160 casos analizados, 22 de ellos obtuvo F1-score por encima de 0,9. En dicho grupo
se encuentran sólo dos modelos: AdaBoost y Decision Tree. La tabla 2 presenta los 10 mejo-
res resultados según el valor de F1-score. Se destaca que la dimensión de embedding d = 4
ofrece el mayor rendimiento, como se detalla en la tabla 3. En particular, la configuración Ada-

Boost con d = 4 y t = 20 alcanza valores máximos en todas las métricas evaluadas: F1-score,
precisión balanceada, sensibilidad y especificidad. Aunque las configuraciones con d = 4 man-
tienen un F1-score superior a 0,989, un incremento a d = 6 conlleva una ligera disminución en
el rendimiento, con valores cercanos a 0,985. El algoritmo AdaBoost iguala el desempeño del
Decision Tree en la configuración [5, 10] (F1-scorede0,98781), pero lo supera en otras combi-
naciones. Los modelos de las tablas 2 y 3 muestran además alta especificidad (mayor o igual
a 0.984) y valores predictivos consistentes en los parámetros PP (valor predictivo positivo) y
NP (valor predictivo negativo) con valores mayores o iguales a 0.98, aunque con mayor varia-
bilidad en sensibilidad (rango: 0.960–1.000). Los resultados sugieren que valores intermedios
de t (20–30) optimizan el balance entre sensibilidad y especificidad, superando el rendimiento
de t = 50 en la misma dimensión de embedding. La diferencia entre las métricas F1-train y
F1-test mostró valores menores a dif − F1 < 0,05 lo que indica que no hay sobre ajuste para
los casos informados. A modo de ejmplo se muestran las curvas aprendizaje del caso AdaBoost
[d, t] = [6, 20] en la figura 3.

D K Modelo F1-Score Balanced Acc Sensitivity Specificity PP Values NP Values F1-train F1-test dif-F1 Overfitting

4 20 AdaBoost 1 1 1 1 1 1 1 1 0 NO
4 50 AdaBoost 0.99223 0.99231 1 0.98462 0.9849 0.98462 1 0.99223 0.00777 NO
4 30 AdaBoost 0.9894 0.98661 0.97321 1 1 1 1 0.9894 0.0106 NO
5 10 AdaBoost 0.98781 0.9875 0.975 1 1 1 1 0.98781 0.01219 NO
5 10 Decision Tree 0.98781 0.9875 0.975 1 1 1 1 0.98781 0.01219 NO
6 10 AdaBoost 0.98706 0.98798 0.99592 0.98004 0.97894 0.98004 1 0.98706 0.01294 NO
6 20 AdaBoost 0.98522 0.9856 0.98062 0.99059 0.98987 0.99059 0.99199 0.98522 0.00677 NO
6 30 AdaBoost 0.98416 0.98036 0.96073 1 1 1 0.99556 0.98416 0.0114 NO
5 30 AdaBoost 0.98364 0.98392 0.97895 0.98889 0.98947 0.98889 1 0.98364 0.01636 NO
5 20 AdaBoost 0.98359 0.98414 0.98462 0.98367 0.984 0.98367 1 0.98359 0.01641 NO

Tabla 2: Resultados de clasificación de los grupos NOR y DIA.
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D K Modelo F1-Score Balanced Acc Sensitivity Specificity PP Values NP Values F1-train F1-test dif-F1 Overfitting

4 10 AdaBoost 0.96366 0.96349 0.92698 1 1 1 1 0.96366 0.03634 NO
4 20 AdaBoost 1 1 1 1 1 1 1 1 0 NO
4 30 AdaBoost 0.9894 0.98661 0.97321 1 1 1 1 0.9894 0.0106 NO
4 50 AdaBoost 0.99223 0.99231 1 0.98462 0.9849 0.98462 1 0.99223 0.00777 NO

Tabla 3: Resultados de clasificación de los grupos NOR y DIA para el caso de dimensión de embedding 4.
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Figura 3: Curvas de aprendizaje correspondientes a la evolución de la precisión de entrenamiento y la precisión de
testeo para el caso AdaBoost [d, t] = [6, 20].

3. CONCLUSIONES Y DISCUSIÓN

El uso del modelo GFS junto al modelo AdaBoost resultó en una combinación exitosa en
la clasificación de las señales de glucemia ya que alrededor del 13,75% de las combinacio-
nes ([d, t],ModeloML) calculadas arrojaron resultados por encima de 0,9 en sus valores de
F1-score. En particular para los datos de entrada ([4, ...], AdaBoost) se vio que que hay una
clasificación consistente en todos los casos analizados, lo que implica una coherencia en el
mecanismo de estos modelos.

A pesar de que hay una diferencia sustantiva entre la cantidad de señales normales y dia-
béticas que puede dar lugar a un desbalanceo de los resultados dado que hay mucha más in-
formación sobre un grupo que sobre otro, este aspecto queda resuelto por el algoritmo GFS al
quitar la información redundante. Esto queda evidenciado por los resultados mostrados en la
tabla de 1 donde, incluso hay casos en los que las señales diabéticas contienen una mayor can-
tidad de vectores. Por este motivo resulta importante destacar que el algoritmo GFS fue capaz
de compensar el desbalanceo presente en la base de datos utilizada.

Es posible que exista alguna configuración de hiperparámetros en algunos modelos descar-
tados, que mejore los resultados y se espera que así ocurra. Eso requiere de un estudio detallado
del uso del GFS en cada uno de los algoritmos ML. En esta primera instancia se pudo ver el
comportaqmiento de los modelos ML, junto con el espacio GFS en la clasificación de las se-
ñales dadas encontrando que el modelo AdaBoost responde bien para todas las configuraciones
iniciales [d, t].

De manera general resultados obtenidos refuerzan la idea de que la combinación de aprendi-
zaje automático con representaciones geométricas de esta clase de señales permite una clasifi-
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cación eficiente de datos de glucemia, con AdaBoost sobresaliendo como un modelo especial-
mente efectivo en este contexto.

4. TRABAJOS FUTUROS

La meta principal fue alcanzar la clasificación más alta posible. Se eligió el criterio de dis-
cretización basándose en este resultado, utilizando el factor de discretización más pequeño que
mejora la clasificación. Por ende, todavía no se ha puesto en marcha una función de costo com-
binada ni una optimización de múltiples objetivos. Este aspecto se considera importante y será
tratado en futuros trabajos.

En futuras etapas de este trabajo se plantea retomar el análisis del conjunto de datos prove-
nientes del espacio GFS, poniendo especial atención en la relación entre dicho espacio inter-
medio y el espacio original de las señales de glucemia. El verdadero desafío no radica en el
análisis dentro del espacio GFS, sino en comprender cómo la información representada en él
se vincula con el dominio original, que es el que realmente interesa para el desarrollo de un
sistema clasificador capaz de detectar casos de Diabetes Mellitus tipo 2.

El trabajo de investigación actual todavía está en proceso y un propósito importante es el de
alcanzar una adecuada capacidad de generalización del modelo, para que el sistema sea capaz
de reaccionar con eficacia ante señales de glucemia que no estén incluidas en el conjunto de
entrenamiento. Si todas las señales de glucemia se utilizan en la construcción del espacio GFS,
el algoritmo logra una excelente clasificación de las señales disponibles, lo que demuestra su
capacidad de aprendizaje dentro del conjunto analizado. Sin embargo, al no haber señales exter-
nas al proceso de entrenamiento, el modelo no puede aún demostrar su capacidad de extrapolar
y predecir correctamente ante señales nunca vistas. Por ello, será conveniente incorporar es-
trategias de validación más rigurosas que permitan evaluar y fortalecer su capacidad predictiva
frente a nuevos datos.
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