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Resumen. Las meta-estructuras, disefiadas para exhibir propiedades dindmicas excepcionales a través
de la incorporacion de elementos resonantes, son el foco de este trabajo. En el mismo, se presenta un ana-
lisis dinamico de vigas de paredes delgadas construidas mediante materiales funcionalmente gradados,
transformadas en metaestructuras mediante la inclusién de resonadores mecdnicos locales. El modelo de
viga desarrollado incorpora la flexibilidad por corte generalizada para flexién y torsién con alabeo no
uniforme, y las ecuaciones que gobiernan el problema dindmico se obtienen a través del principio de
trabajo virtual. Este estudio, se enfoca en cuantificar el impacto de las tensiones iniciales o de precarga
en el fendmeno de aparicion de bandas de atenuacién. Se evalda la influencia en las frecuencias natu-
rales y consecuentemente, en las bandas de atenuacién generadas por la interaccion entre la estructura
portante y los resonadores mecdnicos. Para abordar la incertidumbre inherente en las propiedades de los
materiales gradados, la geometria y las tensiones iniciales, se construye un modelo computacional em-
pleando el método de elementos finitos. Se aplicardn técnicas de modelado probabilistico para analizar
la propagacién de estas incertidumbres y su influencia en la prediccién de las bandas de atenuacion.

Keywords: Meta-Structures, Mechanical Resonators, Initial Stresses.

Abstract. This work focuses on the dynamic analysis of thin-walled beams transformed into meta-
structures by incorporating mechanical resonators. These beams are made from functionally graded
materials. The primary goal is to quantify how pre-stress affects the formation of attenuation bands.
The research investigates the influence of pre-stress on natural frequencies and the resulting attenuation
bands created by the interaction between the main structure and the mechanical resonators. To account
for uncertainties in material properties, geometry, and pre-stress, a computational model based on the
finite element method is used. Probabilistic modeling techniques are applied to analyze how these uncer-
tainties propagate and influence the prediction of the attenuation bands.
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1. INTRODUCCION

El estudio de las meta-estructuras ha surgido como un campo de investigacion vibrante y
prometedor en la ingenieria moderna. Estos materiales, disefiados para exhibir propiedades di-
ndmicas inusuales, como la atenuacion de vibraciones en rangos de frecuencia especificos, han
captado el interés por su potencial para superar las limitaciones de los materiales convenciona-
les (Sun et al., 2023). La clave de su funcionamiento reside en la incorporaciéon de elementos
resonantes o de una periodicidad especifica en su estructura, lo que genera las denominadas
bandas de atenuacién (bandgaps) (Dwivedi et al., 2024).

Una de las principales estrategias para la creacion de estas meta-estructuras es el uso de ma-
teriales funcionalmente gradados (FGM, por sus siglas en inglés) (Karimzadeh et al., 2024).
Los FGM permiten una personalizacion precisa de las propiedades del material en una direc-
cion seleccionada, lo que resulta en mejoras sustanciales en el comportamiento mecanico de la
estructura portante (Karimzadeh et al., 2024; Li et al., 2017). Por ejemplo, la investigacion de Li
et al. (2017) proporciona un marco para el andlisis de vigas gradadas, mientras que estudios més
recientes como el de Amir et al. (2024) han abordado el anélisis de vibracion de vigas curvas
gradadas y la incertidumbre en sus frecuencias naturales. Sin embargo, a pesar de los avances
en el campo, el impacto de las tensiones iniciales (o de precarga) en el fendomeno de bandgaps
en meta-estructuras ha sido un drea menos explorada. La presencia de tensiones iniciales es
inherente en muchos procesos de manufactura y montaje y puede alterar significativamente la
rigidez de una estructura, lo que a su vez modifica sus frecuencias naturales y, por ende, las
caracteristicas de las bandas de atenuacidn. Es por ello que el andlisis probabilistico se presenta
como una herramienta poderosa para abordar incertidumbres en las propiedades del material o
en las tensiones iniciales.

El presente trabajo aborda estos huecos mediante un andlisis dindmico integral del impac-
to de las tensiones iniciales en la formacion y las propiedades de las bandas de atenuacién en
vigas de paredes delgadas funcionalmente gradadas, incorporando resonadores mecénicos loca-
les. Se desarrolla un modelo de viga que incluye flexibilidad por corte generalizada para flexion
y torsion con alabeo no uniforme, y se utiliza el principio de trabajo virtual para derivar las
ecuaciones que gobiernan la dindmica estructural. La metodologia computacional utilizada, se
basa en el método de elementos finitos y, para cuantificar el impacto de las incertidumbres, se
aplica un enfoque de modelado probabilistico (Amir et al., 2024). El objetivo es evaluar c6-
mo las tensiones iniciales modifican las frecuencias naturales del sistema y las caracteristicas
de las bandas de atenuacidn, proporcionando asi informacion esencial para el disefio y optimi-
zacion de estructuras avanzadas con capacidades de atenuacidn ajustables y fiables frente a la
incertidumbre.

2. DESARROLLO
2.1. Desarrollo del modelo deterministico.

Se considera una viga finita de paredes delgadas con eje curvo, como se aprecia en la Fig. 1.
La misma tiene un radio de curvatura R constante, la seccion transversal es simétrica e incluye
resonadores mecdnicos adosados a lo largo de la longitud de la viga. En la Fig. 1 se describe
el sistema de referencia primario {C' : X,Y, Z} el cual se encuentra ubicado en el centro geo-
métrico de la seccion transversal, donde el eje X es tangente al eje circular de la viga, mientras
que los ejes {Y, Z} se tomaran como los ejes principales de inercia y pertenecen a la seccién
transversal de la viga.

El modelo tedrico de la meta-estructura portante se basa en las siguientes hipétesis:
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Figura 1: Viga curva de pared delgada con resonadores mecanicos adosados.

A-La seccidn transversal de la viga curva tiene la configuracion de paredes delgadas. B-La sec-
cion trasversal es regular y rigida en su propio plano. C-El campo de desplazamientos tendréa los
términos lineales y no lineales de primer orden para su descripcion. D-Se considera el esfuerzo
cortante producido por flexion y torsion. Se define una funcién de alabeo referida al centroide.
E-La viga esta construida con componentes metalicos y ceramicos que varian en la direccién Z.
F-Los resonadores mecdnicos tendrdn como direccion de aplicacion el eje Z.

Teniendo en cuenta las hipétesis antes descriptas, tendremos el siguiente vector de desplaza-
mientos generalizados (Piovan et al., 2012).

{U}:{ug}—l—u%L,u}L/jLugL,uéjLugL}:{uf}—l—{uf\m} (1)

donde {U} es el vector de desplazamientos generalizados, conformado por una parte lineal

{uF} y otrano lineal {u"}.

uk u, — wd, 0 —d3 D 0
U)L/ = uy + @3 0 _CI)I Yy (2)
uk u, -0, P 0 z
U%L —q)g — (I)% @1@2 @1@3 0
NL 1 2 2
Uy =5 Q1P —07 — @3 Q03 Y (3)
UJZVL (I)lq)g (I)Q(Dg —‘D% - (I)g z
Donde
. 0,
(I)1:¢x <I>2:9y (1)3:0z_E (I)wzex—i_ﬁ (4)

De la Ec. (1) se desprende que: u, u,, u, serdn los desplazamientos del centro de referencia,
0.y 0, pardmetros de rotacién flexional, 6, es el pardmetro que indica la intensidad de alabeo
y por ultimo ¢, que es el pardmetro de rotacion torsional. La funcién de alabeo puede ser
aproximada con la siguiente expresion (Piovan et al., 2012).

R
w=wkF donde F=—— 5
R+y
Siendo w la funcién de alabeo y w la funcion de alabeo deducida del problema de torsién
pura de Saint Venant. Y donde el factor F cuantifica el efecto de la curvatura a lo largo de la

viga.
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2.2. Principio de trabajo virtual. Campo de deformaciones.

Conforme al campo de desplazamientos generalizados, antes descripto, es posible definir
una expresion genérica del principio de trabajo virtual para un cuerpo que presenta un estado
de tensiones iniciales arbitrarias (Piovan et al., 2012).

1%:/@ﬁWVf/ﬁM%W—/@MVW—/@MW%

Vv Vv |4 (6)
- / X;ouldv — /TiéuiLdS + /piiiéufdv =0
v S v
Donde oy}, X y T generan un estado de autoequilibrio inicial definido por:
1wz/¢%w_/@mmu/@wweo 0
v v s

De las cuales, se define ;; y J?j como las tensiones incrementales e iniciales, X; y Xio como
las fuerzas de volumen incrementales e iniciales aplicadas en el dominio V, T y T2 como las
fuerzas de superficie incrementales e iniciales aplicadas en el dominio S, y p como la densidad.

Luego, se definen las componentes del tensor de deformaciones de Green Lagrange ¢;;, de la
siguiente manera. Donde se desprecian las componentes de segundo orden debidas a desplaza-

mientos lineales y no lineales.

L NL
69:1 Ou; +8_uiL ENLgl Ou; +aulNL +1 Ouy duyy (8)
“J 2 8352 ('3xj *J 2 3:15, al’j 2 81‘2 396]-
Inmediatamente, se realiza la sustitucion de las Ec. (2) y Ec. (3) dentro de la Ec. (8) y luego

dentro de la Ec. (6) para obtener la siguiente expresion del principio de trabajo virtual, con los
respectivos operadores variacionales.

Wi = [,(6D%Qy + 0DEQe)dz + [, UM, Udz — [, 6UTP xda o)
— [, 6DLTYD¢dr — [, §UTCYUdz — sUTCYU = 0

Donde definimos el vector desplazamiento U7, los vectores de deformacién f)]TV , f)g D¢
y los vectores de fuerzas internas Qn y Qc¢.

UT = {uzca Uyc, 9z7 Uz, 91/7 ¢xa 9:{:} GT = {(I)la q>27 (I)g, (I)W}

T T
DN = {5D175D2a5D3>5D4} Dc = {5D5>5D675D7a5D8}

o~ (10)
]ST = {]SN7]5076¢’7 a&}
ox

QYJ\} - {QZ7My7 Mza B} Qg = {Qyu QzaTwaTsv}

Por ultimo, se definen los siguientes términos, que fueron utilizados en la Ec. (9), la matriz
de las resultantes de tension inicial T, las matrices de fuerzas iniciales C% y C%, la matriz de
coeficientes de masa M,,, y el vector P x de fuerzas externas.
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2.3. Discretizacion en elementos finitos.

Se emplea un elemento finito unidimensional, en base a la formulacién débil de las ecuacio-
nes que rigen la estdtica y dindmica de la meta-estructura. La formulacion del elemento finito
se obtiene mediante la discretizacién de la Ec. (9), donde se utilizan elementos de 5 nodos y
funciones de forma cudrticas (Piovan et al., 2012). Dentro del presente trabajo, se utilizard un
discretizacion de 15 elementos. El vector de las variables de desplazamiento se expresa de la
siguiente manera:

(4)

_6 = {Uil)’Uc(f)vUiS)vUe ’US)}

iy (1)
Uij) = {uxcjauycjagzj>uzcja76)ycja ¢era Qij} ] - 17273747 Y

A partir de la formulacién débil devenida del principio de trabajo virtual y aplicando los proce-
dimientos variacionales convencionales, se obtiene la siguiente ecuacién de elementos finitos:

(K + Kg)U+CU+ MU =F

(12)
C=mM+mnK

donde K, Ky M son las matrices globales de rigidez eldstica, rigidez geométrica y masa,
C' es la matriz de amortiguamiento proporcional de Rayleigh, mientras que U, U y F son los
vectores globales de desplazamientos nodales, aceleraciones nodales y fuerzas nodales, respec-
tivamente. Por otra parte, la matriz de rigidez geométrica puede calcularse una vez conocidas
las tensiones iniciales para una configuracion de carga inicial dada. Estas tensiones iniciales se
calculan con la resolucion de la siguiente ecuacion:

[K1{U°} = {F°} (13)
Donde U° y F° son el vector global de los desplazamientos nodales iniciales y el vector
global de todas las fuerzas iniciales puntuales, volumétricas y superficiales, respectivamente.
La Ec. (13) corresponde a la forma de elementos finitos de la condicién de autoequilibrio de las
tensiones iniciales introducidas en la La Ec. (7) .
Con lo cual el método de elementos finitos y la respuesta en el dominio de la frecuencia del
sistema dindmico dada por la Ec. (8), deriva en la siguiente ecuacion matricial correspondiente
a la dindmica del modelo:

U=[K+\Kg —w*M + jwC] ™' F (14)

Donde U y [ son la transformada de Fourier del vector de desplazamiento y el vector de fuerza,
respectivamente; mientras w es la frecuencia circular medida en [rad/seg] y A es un pardmetro
definido para la caracterizacion de las tensiones iniciales, que puede utilizarse para el calculo
de las cargas de pandeo cuando se impone la condicién w = 0 en la Ec. (14).

2.4. Incorporacion de los resonadores mecanicos.

Se incorpora la dindmica de los resonadores mecanicos masa-resorte, dentro de las ecuacio-
nes de equilibrio de la estructura portante.

mji_izj + kjl_LZj = k:juzj j = 1, ceeey N (15)

Donde .; es la coordenada del resonador con respecto a la direccion del eje en el cual estdn
actuando. El desarrollo de la dindmica de los resonadores a lo largo de la viga, y el posterior
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reemplazo dentro de la parte inercial de la formulacion débil de la Ec. (9), modificardn la matriz
global de masa. Se introduce un coeficiente «, para incorporar la dindmica de los resonadores,
que es el cociente entre la masa total de los resonadores mecdnicos y la masa de la viga (masa
distribuida). El coeficiente « se define de la siguiente manera:

m;
Oéj =
Donde m; es la masa de cada uno de los resonadores, /), es la distancia entre los mismos a
lo largo de la longitud de la viga, Ay p son el drea de la seccion transversal y la densidad de
la estructura portante. De esta manera, al introducir la dindmica de los resonadores, y teniendo
en cuenta la hipétesis que contempla un sistema viga-resonadores distribuidos continuamente
e idénticamente iguales, para una cantidad de resonadores infinitos, desarrollada por (Sugino
et al., 2016), se obtiene una nueva matriz global de masa M , que nos deriva en una nueva ecua-
cion matricial correspondiente a la dindmica del modelo con resonadores mecanicos adosados.

(16)

N ~71-1 4
U= K+)\KG+ij—w2M] P (17)

2.5. Modelo estocastico.

El modelo estocdstico se construye a partir de la formulacion de elementos finitos del modelo
deterministico, seleccionando los pardmetros inciertos y asocidndoles variables aleatorias. Se
utiliza el principio de maxima entropia para obtener las funciones de densidad de probabilidades
(PDF). Las variables aleatorias V; con i=1,2,3 se consideran acotadas, cuyos valores limites son
conocidos. En este sentido, se asume que el valor medio de las mismas coincide con el valor
nominal deterministico de cada uno de los parametros seleccionados £{V;} = V,,1=1,2,3 con
el fin de chequear la convergencia. Ademds, podemos asumir que, al no existir dependencia
entre las variables, se toman de forma independiente.

De lo anterior, las PDF de las variables pueden ser expresadas de la siguiente manera:

1

:S[[’VHMVZ] (Uz) 1=1,2,3,4 (18)

1
2 \/gﬂz 51}1’ 7

Donde S[Ly,,Uy;] es el soporte, Ly, y Uy, son las cotas inferior y superior, V., es el valor
esperado y d,; es el coeficiente de variacion, todos pertenecientes a la variable V;, i =1,2,3.
Luego, es utilizada la distribucién uniforme, ya que para el estudio de este trabajo se puede
obtener el maximo de entropia. En consecuencia y mediante la funcién de Matlab unifrnd(
Vi (1 — (5vi\/§) Vi (1 + Opi \/3)), se generan las realizaciones correspondientes para las varia-
bles aleatorias V; ¢ = 1,2, 3. Por ende, y mediante el modelo de elementos finitos de la Ecua-
cién Ec. (14 y 17), a través del método de Monte Carlo, con las PDF definidas en la Ec. (18) el
modelo estocastico puede definirse mediante la siguiente expresion.

U(w) = [K+ AKg — w*M + jwC] ' F (19)

Donde la tipografia diferenciada indica que las entidades son estocdsticas. Para simular la di-
namica estocdstica se utiliza el método de Monte Carlo, lo que implica el cdlculo de un sistema
determinista para cada realizacién de las variables aleatorias V;, © = 1, 2, 3. La convergencia de
la respuesta estocastica es analizada bajo un criterio de media cuadrética apelando a la siguiente
funcion.
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1 Nus
conv (Nys) = N—MSZ/ dw (20)
j=1

Donde N5 es el nimero de muestreos de Monte Carlo y €2 es la banda de frecuencia de
andlisis. U es la respuesta del modelo estocdstico y U es la respuesta del modelo determinista.

2.6. Propiedades de los componentes para la viga FGM.

La viga FGM estara compuesta por dos componentes, divididos en dos fases. Una fase me-
talica y la otra fase de material cerdmico. La fase metalica es de Aluminio con modulo de
elasticidad longitudinal £ = 70 Gpa y densidad p = 2702 kg/m?>. Luego, para la otra fase se
utilizard un material cerdmico, en este caso Alimina, con modulo de elasticidad longitudinal
E = 380 Gpa y densidad p = 3960 kg/m3. Para ambos casos el coeficiente de Poisson es
v = 0, 3. Las propiedades materiales efectivas de la viga FGM, varian continuamente a través
del espesor segun la siguiente ley de potencia.

Prgm = Pm + (De = Pm) (% + %) 1)

Donde el termino py,,,, identifica una propiedad gradada genérica (médulo de elasticidad,
densidad, etc.), mientras que p. y p,, identifican la propiedad homénima para las fases cerdmica
y metdlica, respectivamente. Luego, z es la coordenada que recorre la seccidn transversal de la
viga. Este ultimo tipo de distribucién de material, implica que la viga de paredes delgadas tiene
la parte superior de ceramica y la parte inferior es metalica. El exponente n es una variable tal
que n > 0; su magnitud da la forma de variacién de las propiedades dentro de la seccion de la
viga, ya que estas varian desde la parte inferior de la viga hasta la parte superior de la misma
(Kahya y Turan, 2017).

3. RESULTADOS
3.1. Validacion del modelo.

En esta seccion se realiza una validacion del modelo de viga curva FGM donde se compara
un pardmetro de frecuencia adimensional del modelo 1D de este trabajo, con los resultados
correspondientes a tres trabajos seleccionados. El modelo de viga curva desarrollado en este
trabajo, se puede reducir al caso de una viga recta, si se impone la condicién de R — oo. El

~ . . . ~ 2
parametro de frecuencia para ser evaluado se define de la siguiente manera: w = w(%) o
m

Los trabajos seleccionados son los de (Kahya y Turan, 2017; Le y Nguyen, 2025; Turan et al.,
2023), en estos se comparan los valores obtenidos del pardmetro adimensional con el modelo
numérico 1D del presente trabajo. La comparacién se realiza para dos condiciones de contorno
diferentes, en este caso Empotrada-Empotrada y Empotrada-Libre, utilizando 15 elementos del
modelo de elemento finito, para tres relaciones % diferentes y la primera frecuencia natural de
la viga. Ademas, la gradacion de la viga FGM se considera en la direccion del eje Z, el material
para la fase metélica es aluminio y para la fase de material cerdmico es alimina. Dando como
resultado errores cercanos al 2 %. Teniendo en cuenta la cantidad de elementos que fueron
utilizados, se puede indicar que el modelo 1D propuesto en este trabajo garantiza una buena
obtencidén de resultados.
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Por otro lado, se ejecutd la comparacion de un pardmetro adimensional para la carga critica
de pandeo. Con dicho parametro se realiz6 la comparacion y validacion de la matriz de rigi-
dez geométrica K. En este caso el pardmetro adimensional se define de la siguiente manera:
A= A( éff;) El trabajo seleccionado para tal comparacion es el de (Kahya y Turan, 2017).
La misma se realizé para dos condiciones de contorno diferentes, en este caso Empotrada-
Empotrada y Empotrada-Libre, para una relacion % y para dos valores diferentes del exponente

n. Dando como resultado errores cercanos al 4 %.

3.2. Estudios computacionales

Se emplea una viga curva FGM de paredes delgadas, con seccion transversal simétrica y
ambos extremos empotrados. Se ejecutd el andlisis bajo una respuesta dindmica para una carga
puntual ubicada en el centro de la viga. Los datos mds relevantes de la viga curva para la
ejecucion de los cdlculos son los siguientes: R = 2m, L = 1m, osz = 0,4. La viga curva
de paredes delgadas, tiene una seccidn transversal rectangular, con las siguientes dimensiones:
b = 0,01m, h = 0,05m. La amplitud de la carga puntual es ' = 1 N. Se selecciona una
carga inicial de prueba, para simular la situacion de precarga, generada por las masas de los
resonadores mecdnicos.

La Fig. 2 a) muestra la respuesta dindmica de la solucion del elemento finito 1D. Donde se
puede apreciar que la curva de la respuesta, que corresponde al desplazamiento con tensiones
iniciales, tiene un corrimiento en las frecuencias de resonancia. En cambio en la Fig. 2 b) se
puede apreciar la respuesta dindmica con la inclusién de los resonadores mecéanicos a lo largo de
la viga. En el cual se puede ver, la generacién de una banda de atenuacién o bandgap, en el sector
comprendido en la vecindad del valor de la frecuencia original seleccionada, anulando esta
frecuencia especifica. Ademas, ante el corrimiento de las frecuencias de resonancia, se puede

apreciar que la banda de atenuacion se ve sustancialmente modificada por este desplazamiento.

og(Iup
I~
\
\
/
log(lU])

E| | 1
0 50 100 150 200 250 300 350 400 450 0 20 40 60 80 100 120 140 160 180
Frequency [Hz] Frequency [Hz]

(a) (b)
Figura 2: Respuesta dindmica de la viga FGM. (a) Corrimiento de las frecuencias de resonancia.(b) Aparicién de
la banda de atenuacién y sustancial desplazamiento de la misma.

3.3. Cuantificacion de incertidumbre en la respuesta dinamica

En esta seccion se realiza un estudio relacionado con la propagacion de incertidumbre sobre
aspectos constructivos de la viga FGM y los resonadores mecdnicos. Se seleccionaron tres va-
riables aleatorias de acuerdo con las caracteristicas de los resonadores y con las propiedades de
la viga FGM. Las variables seleccionadas son: el coeficiente ajZ y los médulos de elasticidad
E,, y E. que pertenecen a las propiedades gradativas de la viga. Los valores esperados para las
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variables aleatorias son los siguientes:£{af} = 0,4, E{E,} = 70Gpa, E{E.} = 380 Gpa.
Se considera que las tres variables consideras como inciertas tienen el mismo coeficiente de
variacién d,;. Se ejecutan las realizaciones de Monte Carlo y de esta manera se obtienen los
graficos de convergencia e incertidumbre. Es posible ver en la Fig. 3, una buena convergencia
de manera estable a partir de las 500 iteraciones, para tres coeficientes de variacion diferentes.
En cambio la Fig. 4 se muestra la respuesta del modelo estocastico, donde puede apreciarse
como la incertidumbre de los pardmetros se propaga unicamente hacia la zona donde se genera
la banda de atenuacién, aumentando la dispersion con el aumento de incertidumbre paramétrica
y donde, por la aparicion de las tensiones iniciales, se modifica la zona de bandgap.

convit, o)

£ El
Numero de Simuaciones

Figura 3: Convergencia para d,; = 0, 1 (Rojo),d,; = 0,08 (Verde) y d,; = 0,05 (Azul).
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Figura 4: Respuesta del modelo estocastico (a) Para d,,; = 0, 05. (b) Para §,,; = 0, 1.

4. CONCLUSIONES

En este trabajo se presenté un modelo de viga curva de paredes delgadas construida con
materiales funcionales gradados y seccidn transversal simétrica, para el andlisis de atenuacion
de vibraciones y la propagacién de incertidumbre en ciertos pardmetros, teniendo en cuenta la
aparicion de tensiones iniciales. Asimismo, se han efectuado estudios sobre la evaluacioén de
la eficacia del disefio de la viga frente a la variacién de tres variables aleatorias en el modelo
estocéstico y mediante la incorporacion de resonadores mecanicos, a lo largo del eje Z para
el modelo computacional desarrollado. Para esto, se realiz6 la evaluacion de la robustez del
elemento finito 1D desarrollado, apelando a la comparaciéon y demostrando que, con el mismo,
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se obtienen resultados mds que aceptables frente a la comparacidn con respecto al desarrollo
de otros autores. En consecuencia, se puede indicar que mediante la incorporacién de los reso-
nadores locales, se consigui6 una banda de atenuacién en la cual desaparece la frecuencia del
sistema original. También se puede observar, como las tensiones iniciales modifican la banda de
atenuacion, por el desplazamiento de las frecuencias de resonancia seleccionadas, debido a la
precarga incluida en el estudio. En ciertos casos este desplazamiento puede ser casi impercepti-
ble, pero debido a la precision necesaria en algunas aplicaciones, se necesita un disefio robusto
y eficaz. Finalmente se realiz6 el estudio de la incertidumbre, cuyos resultados mostraron una
gran sensibilidad de la respuesta a variaciones en los valores seleccionados como pardmetros
inciertos. A pesar de la incertidumbre en los cuatro pardmetros seleccionados, se puede ver que
el bandgap, tiene un pequefio desplazamiento generado por la aparicion de las tensiones inicia-
les o de precarga. Pese a esto, se puede apreciar, que se garantiza la atenuacion de la amplitud
para la frecuencia seleccionada.
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