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Resumen. Las meta-estructuras, diseñadas para exhibir propiedades dinámicas excepcionales a través

de la incorporación de elementos resonantes, son el foco de este trabajo. En el mismo, se presenta un aná-

lisis dinámico de vigas de paredes delgadas construidas mediante materiales funcionalmente gradados,

transformadas en metaestructuras mediante la inclusión de resonadores mecánicos locales. El modelo de

viga desarrollado incorpora la flexibilidad por corte generalizada para flexión y torsión con alabeo no

uniforme, y las ecuaciones que gobiernan el problema dinámico se obtienen a través del principio de

trabajo virtual. Este estudio, se enfoca en cuantificar el impacto de las tensiones iniciales o de precarga

en el fenómeno de aparición de bandas de atenuación. Se evalúa la influencia en las frecuencias natu-

rales y consecuentemente, en las bandas de atenuación generadas por la interacción entre la estructura

portante y los resonadores mecánicos. Para abordar la incertidumbre inherente en las propiedades de los

materiales gradados, la geometría y las tensiones iniciales, se construye un modelo computacional em-

pleando el método de elementos finitos. Se aplicarán técnicas de modelado probabilístico para analizar

la propagación de estas incertidumbres y su influencia en la predicción de las bandas de atenuación.

Keywords: Meta-Structures, Mechanical Resonators, Initial Stresses.

Abstract. This work focuses on the dynamic analysis of thin-walled beams transformed into meta-

structures by incorporating mechanical resonators. These beams are made from functionally graded

materials. The primary goal is to quantify how pre-stress affects the formation of attenuation bands.

The research investigates the influence of pre-stress on natural frequencies and the resulting attenuation

bands created by the interaction between the main structure and the mechanical resonators. To account

for uncertainties in material properties, geometry, and pre-stress, a computational model based on the

finite element method is used. Probabilistic modeling techniques are applied to analyze how these uncer-

tainties propagate and influence the prediction of the attenuation bands.
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1. INTRODUCCIÓN

El estudio de las meta-estructuras ha surgido como un campo de investigación vibrante y

prometedor en la ingeniería moderna. Estos materiales, diseñados para exhibir propiedades di-

námicas inusuales, como la atenuación de vibraciones en rangos de frecuencia específicos, han

captado el interés por su potencial para superar las limitaciones de los materiales convenciona-

les (Sun et al., 2023). La clave de su funcionamiento reside en la incorporación de elementos

resonantes o de una periodicidad específica en su estructura, lo que genera las denominadas

bandas de atenuación (bandgaps) (Dwivedi et al., 2024).

Una de las principales estrategias para la creación de estas meta-estructuras es el uso de ma-

teriales funcionalmente gradados (FGM, por sus siglas en inglés) (Karimzadeh et al., 2024).

Los FGM permiten una personalización precisa de las propiedades del material en una direc-

ción seleccionada, lo que resulta en mejoras sustanciales en el comportamiento mecánico de la

estructura portante (Karimzadeh et al., 2024; Li et al., 2017). Por ejemplo, la investigación de Li

et al. (2017) proporciona un marco para el análisis de vigas gradadas, mientras que estudios más

recientes como el de Amir et al. (2024) han abordado el análisis de vibración de vigas curvas

gradadas y la incertidumbre en sus frecuencias naturales. Sin embargo, a pesar de los avances

en el campo, el impacto de las tensiones iniciales (o de precarga) en el fenómeno de bandgaps

en meta-estructuras ha sido un área menos explorada. La presencia de tensiones iniciales es

inherente en muchos procesos de manufactura y montaje y puede alterar significativamente la

rigidez de una estructura, lo que a su vez modifica sus frecuencias naturales y, por ende, las

características de las bandas de atenuación. Es por ello que el análisis probabilístico se presenta

como una herramienta poderosa para abordar incertidumbres en las propiedades del material o

en las tensiones iniciales.

El presente trabajo aborda estos huecos mediante un análisis dinámico integral del impac-

to de las tensiones iniciales en la formación y las propiedades de las bandas de atenuación en

vigas de paredes delgadas funcionalmente gradadas, incorporando resonadores mecánicos loca-

les. Se desarrolla un modelo de viga que incluye flexibilidad por corte generalizada para flexión

y torsión con alabeo no uniforme, y se utiliza el principio de trabajo virtual para derivar las

ecuaciones que gobiernan la dinámica estructural. La metodología computacional utilizada, se

basa en el método de elementos finitos y, para cuantificar el impacto de las incertidumbres, se

aplica un enfoque de modelado probabilístico (Amir et al., 2024). El objetivo es evaluar có-

mo las tensiones iniciales modifican las frecuencias naturales del sistema y las características

de las bandas de atenuación, proporcionando así información esencial para el diseño y optimi-

zación de estructuras avanzadas con capacidades de atenuación ajustables y fiables frente a la

incertidumbre.

2. DESARROLLO

2.1. Desarrollo del modelo determinístico.

Se considera una viga finita de paredes delgadas con eje curvo, como se aprecia en la Fig. 1.

La misma tiene un radio de curvatura R constante, la sección transversal es simétrica e incluye

resonadores mecánicos adosados a lo largo de la longitud de la viga. En la Fig. 1 se describe

el sistema de referencia primario {C : X, Y, Z} el cual se encuentra ubicado en el centro geo-

métrico de la sección transversal, donde el eje X es tangente al eje circular de la viga, mientras

que los ejes {Y, Z} se tomaran como los ejes principales de inercia y pertenecen a la sección

transversal de la viga.

El modelo teórico de la meta-estructura portante se basa en las siguientes hipótesis:
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Figura 1: Viga curva de pared delgada con resonadores mecánicos adosados.

A-La sección transversal de la viga curva tiene la configuración de paredes delgadas. B-La sec-

ción trasversal es regular y rígida en su propio plano. C-El campo de desplazamientos tendrá los

términos lineales y no lineales de primer orden para su descripción. D-Se considera el esfuerzo

cortante producido por flexión y torsión. Se define una función de alabeo referida al centroide.

E-La viga está construida con componentes metálicos y cerámicos que varían en la dirección Z.

F-Los resonadores mecánicos tendrán como dirección de aplicación el eje Z.

Teniendo en cuenta las hipótesis antes descriptas, tendremos el siguiente vector de desplaza-

mientos generalizados (Piovan et al., 2012).
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Donde

Φ1 = ϕx Φ2 = θy Φ3 = θz −
ux

R
Φw = θx +

θy
R

(4)

De la Ec. (1) se desprende que: ux, uy, uz serán los desplazamientos del centro de referencia,

θz y θy parámetros de rotación flexional, θx es el parámetro que indica la intensidad de alabeo

y por último ϕx que es el parámetro de rotación torsional. La función de alabeo puede ser

aproximada con la siguiente expresión (Piovan et al., 2012).

ω = ωF donde F =
R

R + y
(5)

Siendo ω la función de alabeo y ω la función de alabeo deducida del problema de torsión

pura de Saint Venant. Y donde el factor F cuantifica el efecto de la curvatura a lo largo de la

viga.
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2.2. Principio de trabajo virtual. Campo de deformaciones.

Conforme al campo de desplazamientos generalizados, antes descripto, es posible definir

una expresión genérica del principio de trabajo virtual para un cuerpo que presenta un estado

de tensiones iniciales arbitrarias (Piovan et al., 2012).

WT =

∫

V
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L
ijdV +

∫

V
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NL
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Donde σ0
ij ,X̄

0
i y T̄ 0

i generan un estado de autoequilibrio inicial definido por:
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De las cuales, se define σij y σ0
ij como las tensiones incrementales e iniciales, X̄i y X̄0

i como

las fuerzas de volumen incrementales e iniciales aplicadas en el dominio V, T̄ 0
i y T̄ 0

i como las

fuerzas de superficie incrementales e iniciales aplicadas en el dominio S, y ρ como la densidad.

Luego, se definen las componentes del tensor de deformaciones de Green Lagrange ϵij , de la

siguiente manera. Donde se desprecian las componentes de segundo orden debidas a desplaza-

mientos lineales y no lineales.
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Inmediatamente, se realiza la sustitución de las Ec. (2) y Ec. (3) dentro de la Ec. (8) y luego

dentro de la Ec. (6) para obtener la siguiente expresión del principio de trabajo virtual, con los

respectivos operadores variacionales.

WT =
∫
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∫
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δŨTMm

¨̃
Udx−

∫
L
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(9)

Donde definimos el vector desplazamiento ŨT , los vectores de deformación D̃T
N , D̃T

C , D̃G

y los vectores de fuerzas internas Q̃N y Q̃C .

Ũ
T
= {uxc, uyc, θz, uzc, θy, ϕx, θx} ŨT

Φ = {Φ1,Φ2,Φ3,ΦW}

D̃T
N = {εD1, εD2, εD3, εD4} D̃T

C = {εD5, εD6, εD7, εD8}

D̃T
G =

{
D̃N , D̃C , ŨΦ,

∂ŨΦ

∂x

}

Q̃T
N = {Qx,My,Mz, B} Q̃T

C = {Qy, Qz, Tw, Tsv}

(10)

Por ultimo, se definen los siguientes términos, que fueron utilizados en la Ec. (9), la matriz

de las resultantes de tensión inicial T0
G, las matrices de fuerzas iniciales C0

X y C0
S , la matriz de

coeficientes de masa Mm y el vector PX de fuerzas externas.
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2.3. Discretización en elementos finitos.

Se emplea un elemento finito unidimensional, en base a la formulación débil de las ecuacio-

nes que rigen la estática y dinámica de la meta-estructura. La formulación del elemento finito

se obtiene mediante la discretización de la Ec. (9), donde se utilizan elementos de 5 nodos y

funciones de forma cuárticas (Piovan et al., 2012). Dentro del presente trabajo, se utilizará un

discretización de 15 elementos. El vector de las variables de desplazamiento se expresa de la

siguiente manera:

U e = {U (1)

e , U
(2)

e , U
(3)

e , U
(4)

e , U
(5)

e }
U

(j)

e = {uxcj, uycj, θzj, uzcj, , θycj, ϕxcj, θxcj} j = 1, 2, 3, 4, 5
(11)

A partir de la formulación débil devenida del principio de trabajo virtual y aplicando los proce-

dimientos variacionales convencionales, se obtiene la siguiente ecuación de elementos finitos:

(K +KG)U + CU̇ +MÜ = F

C = η1M + η2K
(12)

donde K, KG y M son las matrices globales de rigidez elástica, rigidez geométrica y masa,

C es la matriz de amortiguamiento proporcional de Rayleigh, mientras que U , Ü y F son los

vectores globales de desplazamientos nodales, aceleraciones nodales y fuerzas nodales, respec-

tivamente. Por otra parte, la matriz de rigidez geométrica puede calcularse una vez conocidas

las tensiones iniciales para una configuración de carga inicial dada. Estas tensiones iniciales se

calculan con la resolución de la siguiente ecuación:

[K]
{
U0
}
=
{
F 0
}

(13)

Donde U0 y F 0 son el vector global de los desplazamientos nodales iniciales y el vector

global de todas las fuerzas iniciales puntuales, volumétricas y superficiales, respectivamente.

La Ec. (13) corresponde a la forma de elementos finitos de la condición de autoequilibrio de las

tensiones iniciales introducidas en la La Ec. (7) .

Con lo cual el método de elementos finitos y la respuesta en el dominio de la frecuencia del

sistema dinámico dada por la Ec. (8), deriva en la siguiente ecuación matricial correspondiente

a la dinámica del modelo:

Û =
[
K + λKG − ω2M + jωC

]
−1

F̂ (14)

Donde Û y F̂ son la transformada de Fourier del vector de desplazamiento y el vector de fuerza,

respectivamente; mientras ω es la frecuencia circular medida en [rad/seg] y λ es un parámetro

definido para la caracterización de las tensiones iniciales, que puede utilizarse para el calculo

de las cargas de pandeo cuando se impone la condición ω = 0 en la Ec. (14).

2.4. Incorporación de los resonadores mecánicos.

Se incorpora la dinámica de los resonadores mecánicos masa-resorte, dentro de las ecuacio-

nes de equilibrio de la estructura portante.

mj ¨̄uzj + kjūzj = kjuzj j = 1, ...., N (15)

Donde ūzj es la coordenada del resonador con respecto a la dirección del eje en el cual están

actuando. El desarrollo de la dinámica de los resonadores a lo largo de la viga, y el posterior
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reemplazo dentro de la parte inercial de la formulación débil de la Ec. (9), modificarán la matriz

global de masa. Se introduce un coeficiente α, para incorporar la dinámica de los resonadores,

que es el cociente entre la masa total de los resonadores mecánicos y la masa de la viga (masa

distribuida). El coeficiente α se define de la siguiente manera:

αj =
mj

ρAlM
(16)

Donde mj es la masa de cada uno de los resonadores, lM es la distancia entre los mismos a

lo largo de la longitud de la viga, A y ρ son el área de la sección transversal y la densidad de

la estructura portante. De esta manera, al introducir la dinámica de los resonadores, y teniendo

en cuenta la hipótesis que contempla un sistema viga-resonadores distribuidos continuamente

e idénticamente iguales, para una cantidad de resonadores infinitos, desarrollada por (Sugino

et al., 2016), se obtiene una nueva matriz global de masa M̂ , que nos deriva en una nueva ecua-

ción matricial correspondiente a la dinámica del modelo con resonadores mecánicos adosados.

Û =
[
K + λKG + jωC − ω2M̂

]
−1

F̂ (17)

2.5. Modelo estocástico.

El modelo estocástico se construye a partir de la formulación de elementos finitos del modelo

determinístico, seleccionando los parámetros inciertos y asociándoles variables aleatorias. Se

utiliza el principio de máxima entropía para obtener las funciones de densidad de probabilidades

(PDF). Las variables aleatorias Vi con i=1,2,3 se consideran acotadas, cuyos valores limites son

conocidos. En este sentido, se asume que el valor medio de las mismas coincide con el valor

nominal determinístico de cada uno de los parámetros seleccionados E{Vi} = V i, i =1,2,3 con

el fin de chequear la convergencia. Además, podemos asumir que, al no existir dependencia

entre las variables, se toman de forma independiente.

De lo anterior, las PDF de las variables pueden ser expresadas de la siguiente manera:

pVi
(vi) = S[LVi

,UVi
] (vi)

1

UVi
− LVi

= S[LVi
,UVi

] (vi)
1

2
√
3V iδvi

, i = 1, 2, 3, 4 (18)

Donde S[LVi
,UVi

] es el soporte, LVi
y UVi

son las cotas inferior y superior, V i es el valor

esperado y δvi es el coeficiente de variación, todos pertenecientes a la variable Vi, i =1,2,3.

Luego, es utilizada la distribución uniforme, ya que para el estudio de este trabajo se puede

obtener el máximo de entropía. En consecuencia y mediante la función de Matlab unifrnd(

Vi

(
1− δvi

√
3
)
, Vi

(
1 + δvi

√
3
)
), se generan las realizaciones correspondientes para las varia-

bles aleatorias Vi i = 1, 2, 3. Por ende, y mediante el modelo de elementos finitos de la Ecua-

ción Ec. (14 y 17), a través del método de Monte Carlo, con las PDF definidas en la Ec. (18) el

modelo estocástico puede definirse mediante la siguiente expresión.

Û (ω) =
[
K+ λKG − ω2

M+ jωC
]
−1

F̂ (19)

Donde la tipografía diferenciada indica que las entidades son estocásticas. Para simular la di-

námica estocástica se utiliza el método de Monte Carlo, lo que implica el cálculo de un sistema

determinista para cada realización de las variables aleatorias Vi, i = 1, 2, 3. La convergencia de

la respuesta estocástica es analizada bajo un criterio de media cuadrática apelando a la siguiente

función.
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conv (NMS) =

√√√√ 1

NMS

NMS∑

j=1

∫

Ω

∥∥∥Ûj (ω)− Û (ω)
∥∥∥
2

dω (20)

Donde NMS es el número de muestreos de Monte Carlo y Ω es la banda de frecuencia de

análisis. Û es la respuesta del modelo estocástico y Û es la respuesta del modelo determinista.

2.6. Propiedades de los componentes para la viga FGM.

La viga FGM estará compuesta por dos componentes, divididos en dos fases. Una fase me-

tálica y la otra fase de material cerámico. La fase metálica es de Aluminio con modulo de

elasticidad longitudinal E = 70 Gpa y densidad ρ = 2702 kg/m3. Luego, para la otra fase se

utilizará un material cerámico, en este caso Alúmina, con modulo de elasticidad longitudinal

E = 380 Gpa y densidad ρ = 3960 kg/m3. Para ambos casos el coeficiente de Poisson es

ν = 0, 3. Las propiedades materiales efectivas de la viga FGM, varían continuamente a través

del espesor según la siguiente ley de potencia.

pfgm = pm + (pc − pm)

(
z

h
+

1

2

)n

(21)

Donde el termino pfgm identifica una propiedad gradada genérica (módulo de elasticidad,

densidad, etc.), mientras que pc y pm identifican la propiedad homónima para las fases cerámica

y metálica, respectivamente. Luego, z es la coordenada que recorre la sección transversal de la

viga. Este último tipo de distribución de material, implica que la viga de paredes delgadas tiene

la parte superior de cerámica y la parte inferior es metálica. El exponente n es una variable tal

que n ≥ 0; su magnitud da la forma de variación de las propiedades dentro de la sección de la

viga, ya que estas varían desde la parte inferior de la viga hasta la parte superior de la misma

(Kahya y Turan, 2017).

3. RESULTADOS

3.1. Validación del modelo.

En esta sección se realiza una validación del modelo de viga curva FGM donde se compara

un parámetro de frecuencia adimensional del modelo 1D de este trabajo, con los resultados

correspondientes a tres trabajos seleccionados. El modelo de viga curva desarrollado en este

trabajo, se puede reducir al caso de una viga recta, si se impone la condición de R → ∞. El

parámetro de frecuencia para ser evaluado se define de la siguiente manera: ω̂ = ω(L
2

h
)
√

ρm
Em

.

Los trabajos seleccionados son los de (Kahya y Turan, 2017; Le y Nguyen, 2025; Turan et al.,

2023), en estos se comparan los valores obtenidos del parámetro adimensional con el modelo

numérico 1D del presente trabajo. La comparación se realiza para dos condiciones de contorno

diferentes, en este caso Empotrada-Empotrada y Empotrada-Libre, utilizando 15 elementos del

modelo de elemento finito, para tres relaciones L
h

diferentes y la primera frecuencia natural de

la viga. Ademas, la gradación de la viga FGM se considera en la dirección del eje Z, el material

para la fase metálica es aluminio y para la fase de material cerámico es alúmina. Dando como

resultado errores cercanos al 2%. Teniendo en cuenta la cantidad de elementos que fueron

utilizados, se puede indicar que el modelo 1D propuesto en este trabajo garantiza una buena

obtención de resultados.
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Por otro lado, se ejecutó la comparación de un parámetro adimensional para la carga critica

de pandeo. Con dicho parámetro se realizó la comparación y validación de la matriz de rigi-

dez geométrica KG. En este caso el parámetro adimensional se define de la siguiente manera:

λ̂ = λ( 12L2

Emh3 ). El trabajo seleccionado para tal comparación es el de (Kahya y Turan, 2017).

La misma se realizó para dos condiciones de contorno diferentes, en este caso Empotrada-

Empotrada y Empotrada-Libre, para una relación L
h

y para dos valores diferentes del exponente

n. Dando como resultado errores cercanos al 4%.

3.2. Estudios computacionales

Se emplea una viga curva FGM de paredes delgadas, con sección transversal simétrica y

ambos extremos empotrados. Se ejecutó el análisis bajo una respuesta dinámica para una carga

puntual ubicada en el centro de la viga. Los datos más relevantes de la viga curva para la

ejecución de los cálculos son los siguientes: R = 2m, L = 1m, αZ
j = 0, 4. La viga curva

de paredes delgadas, tiene una sección transversal rectangular, con las siguientes dimensiones:

b = 0, 01m, h = 0, 05m. La amplitud de la carga puntual es F = 1N . Se selecciona una

carga inicial de prueba, para simular la situación de precarga, generada por las masas de los

resonadores mecánicos.

La Fig. 2 a) muestra la respuesta dinámica de la solución del elemento finito 1D. Donde se

puede apreciar que la curva de la respuesta, que corresponde al desplazamiento con tensiones

iniciales, tiene un corrimiento en las frecuencias de resonancia. En cambio en la Fig. 2 b) se

puede apreciar la respuesta dinámica con la inclusión de los resonadores mecánicos a lo largo de

la viga. En el cual se puede ver, la generación de una banda de atenuación o bandgap, en el sector

comprendido en la vecindad del valor de la frecuencia original seleccionada, anulando esta

frecuencia específica. Ademas, ante el corrimiento de las frecuencias de resonancia, se puede

apreciar que la banda de atenuación se ve sustancialmente modificada por este desplazamiento.

(a) (b)

Figura 2: Respuesta dinámica de la viga FGM. (a) Corrimiento de las frecuencias de resonancia.(b) Aparición de

la banda de atenuación y sustancial desplazamiento de la misma.

3.3. Cuantificación de incertidumbre en la respuesta dinámica

En esta sección se realiza un estudio relacionado con la propagación de incertidumbre sobre

aspectos constructivos de la viga FGM y los resonadores mecánicos. Se seleccionaron tres va-

riables aleatorias de acuerdo con las características de los resonadores y con las propiedades de

la viga FGM. Las variables seleccionadas son: el coeficiente αZ
j y los módulos de elasticidad

Em y Ec que pertenecen a las propiedades gradativas de la viga. Los valores esperados para las
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variables aleatorias son los siguientes:E{αZ
j } = 0, 4, E{Em} = 70Gpa, E{Ec} = 380Gpa.

Se considera que las tres variables consideras como inciertas tienen el mismo coeficiente de

variación δvi. Se ejecutan las realizaciones de Monte Carlo y de esta manera se obtienen los

gráficos de convergencia e incertidumbre. Es posible ver en la Fig. 3, una buena convergencia

de manera estable a partir de las 500 iteraciones, para tres coeficientes de variación diferentes.

En cambio la Fig. 4 se muestra la respuesta del modelo estocástico, donde puede apreciarse

como la incertidumbre de los parámetros se propaga únicamente hacia la zona donde se genera

la banda de atenuación, aumentando la dispersión con el aumento de incertidumbre paramétrica

y donde, por la aparición de las tensiones iniciales, se modifica la zona de bandgap.

Figura 3: Convergencia para δvi = 0, 1 (Rojo),δvi = 0, 08 (Verde) y δvi = 0, 05 (Azul).

(a) (b)
Figura 4: Respuesta del modelo estocástico (a) Para δvi = 0, 05. (b) Para δvi = 0, 1.

4. CONCLUSIONES

En este trabajo se presentó un modelo de viga curva de paredes delgadas construida con

materiales funcionales gradados y sección transversal simétrica, para el análisis de atenuación

de vibraciones y la propagación de incertidumbre en ciertos parámetros, teniendo en cuenta la

aparición de tensiones iniciales. Asimismo, se han efectuado estudios sobre la evaluación de

la eficacia del diseño de la viga frente a la variación de tres variables aleatorias en el modelo

estocástico y mediante la incorporación de resonadores mecánicos, a lo largo del eje Z para

el modelo computacional desarrollado. Para esto, se realizó la evaluación de la robustez del

elemento finito 1D desarrollado, apelando a la comparación y demostrando que, con el mismo,
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se obtienen resultados más que aceptables frente a la comparación con respecto al desarrollo

de otros autores. En consecuencia, se puede indicar que mediante la incorporación de los reso-

nadores locales, se consiguió una banda de atenuación en la cual desaparece la frecuencia del

sistema original. También se puede observar, como las tensiones iniciales modifican la banda de

atenuación, por el desplazamiento de las frecuencias de resonancia seleccionadas, debido a la

precarga incluida en el estudio. En ciertos casos este desplazamiento puede ser casi impercepti-

ble, pero debido a la precisión necesaria en algunas aplicaciones, se necesita un diseño robusto

y eficaz. Finalmente se realizó el estudio de la incertidumbre, cuyos resultados mostraron una

gran sensibilidad de la respuesta a variaciones en los valores seleccionados como parámetros

inciertos. A pesar de la incertidumbre en los cuatro parámetros seleccionados, se puede ver que

el bandgap, tiene un pequeño desplazamiento generado por la aparición de las tensiones inicia-

les o de precarga. Pese a esto, se puede apreciar, que se garantiza la atenuación de la amplitud

para la frecuencia seleccionada.
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