
ANALYSIS OF A MASS-SPRING-DAMPER SYSTEM’S RESPONSE

UNDER STOCHASTIC LOADING: A WASSERSTEIN METRIC-BASED

APPROACH

João Felipe Costa Lobato, Roberta Lima and Rubens Sampaio

Pontifícia Universidade Católica do Rio de Janeiro, Laboratório de Dinâmica e Vibrações. Rua

Marquês de São Vicente, 225, Gávea, Rio de Janeiro, Brasil.

Keywords: Stationary Stochastic Processes, Random Vibrations, Engineer Metric, Wasser-

stein Metric.

Abstract. This paper investigates the response of a deterministic, linear, time-invariant mass-spring-

damper system subjected to loading modelled as a stationary stochastic process. The primary objective is

to determine, through numerical simulations using the Monte Carlo method, whether or not the system’s

response converges to a stationary stochastic process. The analysis employs two metrics: Engineer

distance, which focuses on the proximity of distribution means, and Wasserstein distance, which provides

a more robust comparison by quantifying divergence between probability distributions across different

sections of the stochastic process. The methodology developed can be adapted for the analysis of other

mechanical systems, including non-linear systems.
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1 INTRODUCTION

This work aims to analyse the response of a deterministic, linear, and time-invariant system

with one degree of freedom of the mass-spring-damper type, illustrated in Fig. 1, subjected to a

load modelled as a stationary stochastic process.

Figure 1: Analysed mass-spring-damper system.

The system parameters are: mass m = 1 kg, damping coefficient c = 0.1 Ns/m, and spring

stiffness k = 1 N/m. The mass position is denoted by X , and zero initial conditions are assumed

for both displacement and velocity. The amplitude Fa and frequency Fω of the stochastic forcing

F are modelled as independent random variables, both normally distributed as N (1, 1/3). The

system’s governing equation is:

Ẍ (t) + 0.1Ẋ (t) + X (t) = Fa cos(Fωt). (1)

Since the excitation F is random, the system response X is also modelled as a stochastic

process. The aim is to investigate whether the system response exhibits stationarity properties

in the steady state (Lobato, 2024; Benaroya and Han, 2005).

Let T be an analysis interval, a stochastic process X is a function such that ∀t ∈ T , there

exists a random variable X (t) defined on a probability space (Ω,F, Pr).
Let T be a time interval. A stochastic process X is a function such that for all t ∈ T , there

exists a random variable X (t) defined on a probability space (Ω,F, Pr). A process is said to be

strictly stationary if for any m ∈ N and any tuple (t1, ..., tm) ∈ Tm, the joint distribution of

(X (t1), ...,X (tm)) is identical to that of (X (t1+∆t), ...,X (tm+∆t)) for all ∆t ∈ R. It is said

to be weakly stationary if this equality occurs only for m = 1 and m = 2.

The goal of this study is to verify whether the system response exhibits steady-state station-

arity according to the aforementioned definitions. The analysis is carried out through numer-

ical simulations using the Monte Carlo method (Sampaio and Lima, 2012), in which multiple

realizations of the excitation are generated, and for each realization, the system response is

computed via an algebraic expression (Inman, 2014) over a specified time interval.

From the resulting response realizations, a statistical model of the system response is con-

structed by computing sample means over time and normalized histograms for different sec-

tions of the stochastic process. The number of realizations is determined through a convergence

analysis: the number is increased until the computed statistics stabilize within a predefined

tolerance. Because the Monte Carlo method does not yield joint probability distributions for

(X (t1), . . . ,X (tm)), but rather normalized histograms, two main challenges arise. The first is

that comparing histograms is generally limited to visual inspection, which is imprecise. The

second is that visualizing histograms is restricted to m = 1 and m = 2, i.e., at most, the joint

histogram of two sections of the stochastic process can be observed.

In order to overcome the limitations of visual histogram comparisons and the restriction on

visualizing bivariate histograms, metrics will be used to compare the joint probability distribu-

tions of up to five sections of the stochastic process that describes the system response. Two
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metrics will be employed: the Engineer distance and the Wasserstein distance, as described in

Section 2.

2 ENGINEER AND WASSERSTEIN METRICS

Let X = X (t1) and Y = X (t2) be two random variables originating from a stochastic

process X . Their probability distributions are pX and pY respectively. The Engineer distance

between them is given by Eq. (2) (Rachev et al., 2013):

E(pX , pY ) = |E[X]− E[Y ]| =

∣
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, (2)

if X and Y have means. When the probability densities of X and Y are unknown, but one has

n realizations of these random variables, given by x(1), . . . , x(n) and y(1), . . . , y(n), it is possible

to calculate an approximation for the Engineer distance X1 and X2 by Eq. (3):
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Let X = X (t1) and Y = X (t2) be two continuous random variables with probability densi-

ties pX and pY and cumulative probability distributions PX and PY respectively. The Wasser-

stein distance of order q Wq between them is given by Eq (4) (Deza and Deza, 2016):

Wq(pX , pY ) = (inf E[|X − Y |q])1/q =

(
∫

R

|PX(x)− PY (x)|
qdx

)1/q

. (4)

Similarly to the Engineer distance, it is possible to compute an approximation to the Wasser-

stein distance when the probability densities of X1 and X2 are unknown, but there are real-

izations of these random variables. Let x
(1)
1 , . . . , x

(n)
1 and x

(1)
2 , . . . , x

(n)
2 be realizations of X1

and X2 ordered in increasing order such that x
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(n)
2 . An

approximation for the Wasserstein distance X and Y can be calculated by the equation (5):

Ŵq(pX , pY ) =
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The Wasserstein distance can also be defined for random vectors with dimension m > 1. Let

X = [X (t1),X (t2), · · · ,X (tm)]
⊺ and Y = [X (tm+1), · · · ,X (t2m)]

⊺ be two random vectors in

R
m containing different sections of the stochastic process X and probability distributions pX

and pY respectively. The Wasserstein distance between pX and pY is given by Eq. (6) (Bigot,

2020):

Wq,m(pX, pY) = inf
π∈Γ(pX,pY)

(
∫

Rm

|x− y|qdπ(x,y)

)1/q

, (6)

where Γ(pX, pY) is the set of probability measures (also called transport plans) in R
m × R

m

with respective marginal distributions pX and pY.
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Figure 2: Engineer distances for different ∆t and damping factors.

3 NUMERICAL SIMULATION RESULTS

3.1 Engineer Distances: Influence of the Damping Factor

Figure 2 presents the approximations for the Engineer distances between the sections X (t)
and X (t+∆t), calculated for different values of the damping ratio ζ = c

2
√
mk

, considering fixed

intervals of ∆t. The horizontal axis represents the time t (in seconds), while the vertical axis, in

logarithmic scale, shows the values of the Engineer distances. It is important to highlight that,

for each point in the graph, the position on the t axis indicates the starting instant of the section

X (t), while X (t+∆t) is defined based on the fixed ∆t.
Each curve in the graph corresponds to a specific value of ζ , which allows us to observe how

damping affects distance approximations over time. The behaviour of the curves shows that

higher damping values result in faster convergence of distances to values close to zero, indicat-

ing less variation between the distributions of the compared sections. However, the stabilization

of the sample Engineer distances is not sufficient to assert that the system response converges

to a stationary stochastic process, since stationariness requires that the joint probability distri-

butions of the process sections remain invariant over time, not just the stability of the first-order

moments.

3.2 Wasserstein distances

Applying the Eq. (5), the Wasserstein distances between the position distributions were cal-

culated for different intervals, changing certain parameters. The default dimension and order

are m = 1 and q = 2 respectively.

3.2.1 Influence of the Damping Factor

Similarly to what was done for the Engineer distance, an analysis was made of the influence

of the damping factor ζ of the system on the approximations for the Wasserstein distances

between the sections X (t) and X (t + ∆t). Through the results obtained, shown in Figure 3, it

can be seen that the greater the damping, the faster the Wasserstein distances decay, indicating

less variation between the distributions of the compared sections.

J.F. LOBATO, R. LIMA, R. SAMPAIO1460

Copyright © 2025 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


0 100 200 300
Time (s)

10 -3

10 -2

10 -1

10 0

10 1

D
is

ta
nc

e

Wasserstein Distances
for "t = 10 s

0 100 200 300
Time (s)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

D
is

ta
nc

e

Wasserstein Distances
for "t = 5 s

0 100 200 300
Time (s)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

D
is

ta
nc

e

Wasserstein Distances
for "t = 2 s

Figure 3: Wasserstein distances for different ∆t and damping factors ζ for q = 2.

3.2.2 Influence of the Dimension
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Figure 4: Wasserstein distances for different ∆t and dimensions m for q = 2.

Figure 4 shows the computed approximations of the Wasserstein distances between the prob-

ability distributions of the random vectors X and Y ∈ R
m. These vectors represent joint dis-

tributions of up to five sections, with m ∈ {1, 2, 3, 4, 5}, corresponding to the response X
for different values of ∆t. For each value of ∆t, the sections are uniformly selected with a

spacing of ∆t, resulting in the following definitions: X = [X (t1),X (t2), · · · ,X (tm)]
⊺ and

Y = [X (tm+1), · · · ,X (t2m)]
⊺, with the condition that tj = t1 + (j − 1)∆t for j = 1, . . . , 2m.

For each point in the graph, the position on the time axis indicates the initial instant selected for

the section X (t1). It is observed that the distances converge for all dimensions, with the slowest

convergence occurring for m = 1.

4 CONCLUSIONS

This paper investigated the response of a deterministic mass-spring-damper system subjected

to a loading described by a stationary stochastic process. The main objective was to use numer-
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ical approximations of the engineering and Wasserstein distances to assess whether or not the

system’s response would exhibit characteristics of stationarity in the steady-state regime. The

Engineer distance, focused on the proximity of distribution means, was useful for a preliminary

assessment, while the Wasserstein distance provided a more robust comparison, allowing for

the quantification of divergence between the approximated probability distributions at different

sections of the stochastic process.

Furthermore, due to the use of the Monte Carlo method, the joint probability distribution of

different sections of the system response was unknown, with only histograms available. This

created challenges for comparisons, since comparing histograms is, in principle, an imprecise

task requiring visual inspection. Furthermore, histogram visualization is limited to a maximum

of two sections of the stochastic process simultaneously. In this context, the use of the Wasser-

stein distance proved crucial to overcoming these limitations. This metric was used to compare

the joint probability distributions of up to five sections of the stochastic process.

Finally, the methodology developed in this study can be adapted for the analysis of other

mechanical systems, including non-linear systems. Its usefulness lies in the lack of general

theoretical results for characterizing stationarity in systems of this type.
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