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Abstract. This paper investigates the response of a deterministic, linear, time-invariant mass-spring-
damper system subjected to loading modelled as a stationary stochastic process. The primary objective is
to determine, through numerical simulations using the Monte Carlo method, whether or not the system’s
response converges to a stationary stochastic process. The analysis employs two metrics: Engineer
distance, which focuses on the proximity of distribution means, and Wasserstein distance, which provides
a more robust comparison by quantifying divergence between probability distributions across different
sections of the stochastic process. The methodology developed can be adapted for the analysis of other
mechanical systems, including non-linear systems.
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1 INTRODUCTION

This work aims to analyse the response of a deterministic, linear, and time-invariant system
with one degree of freedom of the mass-spring-damper type, illustrated in Fig. 1, subjected to a
load modelled as a stationary stochastic process.
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Figure 1: Analysed mass-spring-damper system.

The system parameters are: mass m = 1 kg, damping coefficient ¢ = 0.1 Ns/m, and spring
stiffness £ = 1 N/m. The mass position is denoted by &X', and zero initial conditions are assumed
for both displacement and velocity. The amplitude F;, and frequency F,, of the stochastic forcing
JF are modelled as independent random variables, both normally distributed as N'(1,1/3). The
system’s governing equation is:

X(t) 4+ 0.1X(t) + X(t) = F,cos(E,t). (1)

Since the excitation F is random, the system response X is also modelled as a stochastic
process. The aim is to investigate whether the system response exhibits stationarity properties
in the steady state (Lobato, 2024; Benaroya and Han, 2005).

Let T" be an analysis interval, a stochastic process X" is a function such that V¢ € T, there
exists a random variable X'(¢) defined on a probability space (€2, F, Pr).

Let 7" be a time interval. A stochastic process X is a function such that for all ¢ € 7', there
exists a random variable X (t) defined on a probability space (€2, F, Pr). A process is said to be
strictly stationary if for any m € N and any tuple (¢4, ...,t,,) € T™, the joint distribution of
(X(t1), ..., X(t,,)) is identical to that of (X (t; + At), ..., X (t,, + At)) for all At € R. Itis said
to be weakly stationary if this equality occurs only for m = 1 and m = 2.

The goal of this study is to verify whether the system response exhibits steady-state station-
arity according to the aforementioned definitions. The analysis is carried out through numer-
ical simulations using the Monte Carlo method (Sampaio and Lima, 2012), in which multiple
realizations of the excitation are generated, and for each realization, the system response is
computed via an algebraic expression (Inman, 2014) over a specified time interval.

From the resulting response realizations, a statistical model of the system response is con-
structed by computing sample means over time and normalized histograms for different sec-
tions of the stochastic process. The number of realizations is determined through a convergence
analysis: the number is increased until the computed statistics stabilize within a predefined
tolerance. Because the Monte Carlo method does not yield joint probability distributions for
(X(t1),...,X(tm)), but rather normalized histograms, two main challenges arise. The first is
that comparing histograms is generally limited to visual inspection, which is imprecise. The
second is that visualizing histograms is restricted to m = 1 and m = 2, i.e., at most, the joint
histogram of two sections of the stochastic process can be observed.

In order to overcome the limitations of visual histogram comparisons and the restriction on
visualizing bivariate histograms, metrics will be used to compare the joint probability distribu-
tions of up to five sections of the stochastic process that describes the system response. Two
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metrics will be employed: the Engineer distance and the Wasserstein distance, as described in
Section 2.

2 ENGINEER AND WASSERSTEIN METRICS

Let X = X(t;) and Y = X(t3) be two random variables originating from a stochastic
process X. Their probability distributions are px and py respectively. The Engineer distance
between them is given by Eq. (2) (Rachev et al., 2013):

E(px,py) = [E[X] - E[Y]] = ) (2)

[ otoxte) = priois

if X and Y have means. When the probability densities of X and Y are unknown, but one has
n realizations of these random variables, given by ™), ..., 2™ and y™), ...y, it is possible
to calculate an approximation for the Engineer distance X; and X, by Eq. (3):

PRED WL

Let X = X(t;) and Y = X(t2) be two continuous random variables with probability densi-
ties px and py and cumulative probability distributions Px and Py respectively. The Wasser-
stein distance of order ¢ VW, between them is given by Eq (4) (Deza and Deza, 2016):

E(px, py) 3)

1/q
WWW)MMXWW:%%W%WM>- @

Similarly to the Engineer distance, it is possible to compute an approximation to the Wasser-
stein distance when the probability densities of A} and A, are unknown, but there are real-

izations of these random variables. Let A”, e ,xg") and xgl), e ,xgn) be realizations of X

and X, ordered in increasing order such that xgl) < ... < acgn) and xgl) < ... < xg”). An
approximation for the Wasserstein distance X and Y can be calculated by the equation (5):

1/q
Wo(px,py) = (Z\x —yt ) : (5)

The Wasserstein distance can also be defined for random vectors with dimension m > 1. Let
X = [X(t1),X(tz), -, X(ty)]Tand Y = [X(t;ns1), - - , X(t2)]|T be two random vectors in
R™ containing different sections of the stochastic process X and probability distributions px
and py respectively. The Wasserstein distance between px and py is given by Eq. (6) (Bigot,
2020):

1/q
Wq,m(anpY) = inf (/ |X - Y|qdﬂ-<x7 Y)) ’ (6)
Rm

mel(px,py)

where I'(px, py) is the set of probability measures (also called transport plans) in R™ x R™
with respective marginal distributions px and py.
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Figure 2: Engineer distances for different At and damping factors.

3 NUMERICAL SIMULATION RESULTS
3.1 Engineer Distances: Influence of the Damping Factor

Figure 2 presents the approximations for the Engineer distances between the sections X ()
and X (¢t + At), calculated for different values of the damping ratio { = NLm—k, considering fixed
intervals of At. The horizontal axis represents the time ¢ (in seconds), while the vertical axis, in
logarithmic scale, shows the values of the Engineer distances. It is important to highlight that,
for each point in the graph, the position on the ¢ axis indicates the starting instant of the section
X (t), while X (t + At) is defined based on the fixed At.

Each curve in the graph corresponds to a specific value of ¢, which allows us to observe how
damping affects distance approximations over time. The behaviour of the curves shows that
higher damping values result in faster convergence of distances to values close to zero, indicat-
ing less variation between the distributions of the compared sections. However, the stabilization
of the sample Engineer distances is not sufficient to assert that the system response converges
to a stationary stochastic process, since stationariness requires that the joint probability distri-
butions of the process sections remain invariant over time, not just the stability of the first-order
moments.

3.2 Wasserstein distances

Applying the Eq. (5), the Wasserstein distances between the position distributions were cal-
culated for different intervals, changing certain parameters. The default dimension and order
are m = 1 and g = 2 respectively.

3.2.1 Influence of the Damping Factor

Similarly to what was done for the Engineer distance, an analysis was made of the influence
of the damping factor ¢ of the system on the approximations for the Wasserstein distances
between the sections X'(t) and X (¢ + At). Through the results obtained, shown in Figure 3, it
can be seen that the greater the damping, the faster the Wasserstein distances decay, indicating
less variation between the distributions of the compared sections.
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Figure 3: Wasserstein distances for different At and damping factors ¢ for ¢ = 2.

3.2.2 Influence of the Dimension
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Figure 4: Wasserstein distances for different At and dimensions m for ¢ = 2.

Figure 4 shows the computed approximations of the Wasserstein distances between the prob-

ability distributions of the random vectors X and Y € R™. These vectors represent joint dis-
tributions of up to five sections, with m € {1,2,3,4,5}, corresponding to the response X
for different values of At. For each value of At, the sections are uniformly selected with a
spacing of At, resulting in the following definitions: X = [X(t1), X (t2), -, X (t,)]T and
Y = [X(tmt1), -+, X(t2m)]T, with the condition that ¢; = t; + (7 — 1)Atfor j = 1,...,2m.
For each point in the graph, the position on the time axis indicates the initial instant selected for
the section X'(¢;). It is observed that the distances converge for all dimensions, with the slowest
convergence occurring for m = 1.

4 CONCLUSIONS

This paper investigated the response of a deterministic mass-spring-damper system subjected
to a loading described by a stationary stochastic process. The main objective was to use numer-
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ical approximations of the engineering and Wasserstein distances to assess whether or not the
system’s response would exhibit characteristics of stationarity in the steady-state regime. The
Engineer distance, focused on the proximity of distribution means, was useful for a preliminary
assessment, while the Wasserstein distance provided a more robust comparison, allowing for
the quantification of divergence between the approximated probability distributions at different
sections of the stochastic process.

Furthermore, due to the use of the Monte Carlo method, the joint probability distribution of
different sections of the system response was unknown, with only histograms available. This
created challenges for comparisons, since comparing histograms is, in principle, an imprecise
task requiring visual inspection. Furthermore, histogram visualization is limited to a maximum
of two sections of the stochastic process simultaneously. In this context, the use of the Wasser-
stein distance proved crucial to overcoming these limitations. This metric was used to compare
the joint probability distributions of up to five sections of the stochastic process.

Finally, the methodology developed in this study can be adapted for the analysis of other
mechanical systems, including non-linear systems. Its usefulness lies in the lack of general
theoretical results for characterizing stationarity in systems of this type.

REFERENCES

Benaroya H. and Han S. Probability Models in Engineering and Science. Taylor & Francis
Group, LLC, Boca Raton FL, United States, 2005. ISBN 978-0-8247-2315-6.

Bigot J. Statistical data analysis in the wasserstein space. ESAIM: Proceedings and Surveys,
68:1-19, 2020. http://doi.org/10.1051/proc/202068001.

Deza M.M. and Deza E. Encyclopedia of Distances. Springer, Russia, France, 4 edition, 2016.
ISBN 978-3-662-52844-0. http://doi.org/10.1007/978-3-662-52844-0.

Inman D.J. Engineering vibrations. Pearson Education, New Jersey, United States, 4 edition,
2014. ISBN 978-0-13-287169-3.

Lobato J.E.C. Desenvolvimento de uma metodologia para andlises estatisticas de um
sistema massa-mola-amortecedor excitado por um carregamento estocdstico, 2024.
http://doi.org/10.17771/PUCRio0.acad.68856. Graduation Project, Department of Mechani-
cal Engineering, PUC-Rio, Rio de Janeiro.

Rachev S.T., Klebanov L.B., Stoyanov S.V., and Fabozzi FJ. The Methods of Distances in the
Theory of Probability and Statistics. Springer, United States, Czechia, Singapore, France,
2013. ISBN 978-1-4614-4869-3. http://doi.org/10.1007/978-1-4614-4869-3.

Sampaio R. and Lima R. Modelagem estocdstica e geracdo de amostras de varidveis e ve-
tores aleatorios, volume 70 of Notas em Matemdtica Aplicada. Sociedade Brasileira de
Matemitica Aplicada e Computacional, Sdo Carlos - SP, Brazil, 2012.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://doi.org/10.1051/proc/202068001
http://doi.org/10.1007/978-3-662-52844-0
http://doi.org/10.17771/PUCRio.acad.68856
http://doi.org/10.1007/978-1-4614-4869-3
http://www.amcaonline.org.ar

	INTRODUCTION
	ENGINEER AND WASSERSTEIN METRICS
	NUMERICAL SIMULATION RESULTS
	Engineer Distances: Influence of the Damping Factor
	Wasserstein distances
	Influence of the Damping Factor
	Influence of the Dimension


	CONCLUSIONS

