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Resumen. Para monitorear la salud estructural (SHM), se han desarrollado diferentes metodologias
donde la mayoria se basan en el registro de vibraciones ambientales. De los registros aceleracion-
tiempo se identifican los pardmetros dindmicos. Se construye un modelo numérico paramétrico y los
pardmetros se optimizan para que las predicciones del modelo se aproximen a los valores
identificados de las mediciones registradas. Se consideran las incertidumbres en las caracteristicas
fisicas de la estructura, como dimensiones, propiedades de materiales y condiciones de borde, también
las incertidumbres debido a errores de medicién y aproximaciones de los métodos de identificacion.
Se investiga en este trabajo una estructura formada por vigas prefabricadas de 16m de luz. Se analiza
una de las vigas excitada con impactos controlados y registrando la historia aceleracién — tiempo en la
etapa de vibracion libre. A partir de los multiples registros se obtiene la estadistica de las frecuencias
utilizando 2 métodos de identificacién de sistemas. En el proceso de optimizacién se minimiza el
cuadrado de la diferencia relativa entre las frecuencias del modelo y las identificadas. Se construye asi
un modelo probabilistico para estudiar el comportamiento estocdstico de la estructura analizada.

Keywords: Uncertainties, Structural dynamics, Parameter optimization, Concrete beams.

Abstract. Different methodologies have been developed for structural health monitoring (SHM), most
of which are based on recording ambient vibrations. Dynamic parameters are identified from the
acceleration-time recordings. A parametric numerical model is constructed, and the parameters are
optimized so that the model prediction approximates the values identified from the recorded
measurements. Uncertainties in the physical characteristics of the structure, such as dimensions,
material properties, and boundary conditions, are considered, as well as uncertainties due to
measurement errors and approximations of the identification methods. This work investigates a
structure consisting of 16-m-span precast beams. One of the beams is excited by controlled impacts
and recording the acceleration-time history in the free vibration stage. From the multiple recordings,
frequency statistics are obtained using two system identification methods. In the optimization process,
the square of the relative difference between the model and identified frequencies is minimized. A
probabilistic model is thus constructed to study the stochastic behavior of the analyzed structure.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional
ISSN: 2591-3522 DOI: 10.70567/mc.v42.0csid8459


https://creativecommons.org/licenses/by/4.0
http://www.amcaonline.org.ar
https://doi.org/10.70567/mc.v42.ocsid8459

1464 O. MOLLER, G.N. LUCERQ, J.P. ASCHERI

1 INTRODUCCION

Un tema de importancia, por el impacto sobre los programas de mantenimiento de
infraestructura como por ejemplo puentes, es el seguimiento de la evolucion del estado de
dafio denominado “monitoreo de la salud estructural” (SHM). Una técnica es estudiar las
propiedades modales del sistema bajo vibraciones ambientales o condiciones normales de
operacion, que se denomina “Andlisis Modal Operacional” (OMA), (Brincker, 2015; Hizal,
2021; Mostafaei et al. 2025; Okur et al., 2025; Huang et al., 2025). Presenta ventajas en el
bajo costo, en la velocidad de implementacién, y utiliza los avances en los equipos de registro
y en los métodos computacionales.

La identificacién de las propiedades modales de un sistema estructural consiste en
correlacionar las caracteristicas dindmicas de un modelo matemadtico con las propiedades
fisicas del sistema identificadas de mediciones experimentales (Peeters et al., 1999). La
excitacion sobre la estructura debe tener caracteristicas de ruido blanco, es decir, su energia
distribuida en un amplio rango de frecuencias que cubra todos los modos de interés para que
sus contribuciones puedan ser capturadas por las mediciones.

El modelo numérico, actualmente denominado “gemelo digital” (DTM), se construye con
pardmetros que se optimizan para que las predicciones del modelo se aproximen a los datos
registrados (Nicoletti et al., 2023). Se presentan varias limitaciones: (a) El nimero de sensores
instalados es limitado, entonces no es posible obtener una resolucién espacial detallada; (b)
Estin presentes incertidumbres en las mediciones, simplificaciones y aproximaciones del
modelo propuesto, variaciones en las dimensiones geométricas, propiedades de los materiales,
condiciones de borde, y también aproximaciones en los métodos numéricos de identificacion.

Entonces, los parametros del modelo también tendran incertidumbres y cada uno se debe
caracterizar como variable aleatoria con su funcién de densidad de probabilidades, valor
medio, desvio estdndar, y correlacion entre los pardmetros. Asi se puede generar un modelo
paramétrico con incertidumbres a utilizar en predicciones probabilisticas, como por ejemplo
estimar probabilidades de estados de dafio (Feng et al., 2020, Moller et al., 2024).

Se presenta en este trabajo la generacion de un modelo paramétrico con incertidumbres de
una viga de hormigén pretensado de 16m de luz perteneciente a un entrepiso prefabricado,
todavia sin las terminaciones, lo que permiti6 estudiar el elemento estructural individual.

2 ELEMENTO ESTRUCTURAL

La Figura 1 muestra una vista superior parcial con los puntos de medicién y 3
acelerometros instalados, y otra vista desde abajo desde el nivel inferior. La seccion recta con
la denominacion de los pardmetros geométricos se presenta en la Figura 2.

Para el modelo numérico, presentado en la Figura 3, se utilizaron 3904 elementos de
cascara plana con 1688 nodos y 10128 grados de libertad. Las vigas transversales de los
extremos estdn apoyadas en los porticos soporte, y la restriccion eldstica de esos vinculos se
representa con resortes rotacionales y lineales.

Los otros pardmetros a optimizar son el méodulo de elasticidad de las vigas Eyigs, €l modulo
de elasticidad de la losa Ejs, €l peso especifico del material , y las rigideces de los resortes
rotacionales ko y longitudinal kiong.

3 MEDICIONES EXPERIMENTALES — IDENTIFICACION

La viga es excitada con el impacto de una carga vertical puntual, que contiene energia en un
amplio rango de frecuencias, para generar luego un estado de vibracion libre y registrar la
respuesta de aceleracion — tiempo en 44 puntos como se muestra en la Figura 4. Se utilizan 3

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://www.amcaonline.org.ar

Mecanica Computacional Vol XLII, pags. 1463-1472 (2025) 1465

acelerémetros de bajo costo organizados en 23 arreglos (setups) manteniendo puntos fijos que
permiten luego ensamblar los resultados de los 44 puntos, ver Lucero et al. (2025).

Figura 1: Vista superior e inferior de la viga pretensada prefabricada
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Figura 2: Seccién recta y pardmetros geométricos
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Figura 4: Planta de la viga con los puntos de medicién y de impactos
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De los registros aceleracion — tiempo se identifican las frecuencias naturales no
amortiguadas, las relaciones de amortiguamiento y las formas modales de los 10 primeros
modos de vibracién de la estructura aplicando dos metodologias: (a) Identificacién por
descomposicién en el dominio de las frecuencias mejorado (EFDD); (b) Identificaciéon por
sub-espacios estocdsticos en el dominio del tiempo (SSI), ver Lucero et al. (2025).

Para la optimizacién de los parametros del modelo se utilizan las frecuencias naturales no
amortiguadas. Se aplicaron 10 impactos en cada uno de los 23 setups, registrando las 3
componentes X, y, z, resultando 690 conjuntos de las primeras 10 frecuencias naturales para
cada técnica de identificaciéon EFDD y SSI.

Hay incertidumbres o errores presentes en las mediciones, diferencias en la energia
entregada en cada uno de los 10 impactos, aproximaciones en los métodos de identificacion,
que originan variaciones en cada conjunto de frecuencias. Estas incertidumbres se tienen en
cuenta con la estadistica de los 690 conjuntos en cada metodologia, presentdndose en la Tabla
1 la correspondiente a EFDD. Resultados similares, pero no iguales, se obtienen con SSI.

f1(Hz) f2(Hz) 3 (Hz) f4(Hz) 15 (Hz) 16 (Hz) £7 (Hz) 8 (Hz) £9 (Hz)f10 (Hz)

Valores medios : 6.4627 9.0684 12.5297 20.6759 22.3991 36.0779 40.3586 42.9357 51.1093 54.0027
Desvios estandar : 0.0779 0.0653 0.0283 0.0882 0.0850 0.0573 0.2264 0.2403 0.0998 0.2156
Coef de variacion : 0.0121 0.0072 0.0023 0.0043 0.0038 0.0016 0.0056 0.0056 0.0020 0.0040

Matriz de coeficientes 1 -0.0570 0.1059 0.0373 0.1995 0.2451 0.0445 -0.0126 0.1139 -0.0420
de correlacion -0.0570 1 0.0203 0.0822 -0.0467 -0.0175 -0.0387 -0.0263 -0.0132 -0.0578
0.1059 0.0203 1 0.0253 0.3617 0.4147 0.0243 -0.0615 0.3672 0.0064
0.0373 0.0822 0.0253 1 0.0288 0.1565 -0.1016 0.0049 0.2582 -0.0560
0.1995 -0.0467 0.3617 0.0288 1 0.6456 0.0550 0.0505 0.4588 0.0712
0.2451 -0.0175 0.4147 0.1565 0.6456 1 -0.0052 0.0774 0.6500 0.0262
0.0445 -0.0387 0.0243 -0.1016 0.0550 -0.0052 1 -0.0886 0.0143 0.0454
-0.0126 -0.0263 -0.0615 0.0049 0.0505 0.0774 -0.0886 1 0.0497 0.1019
0.1139 -0.0132 0.3672 0.2582 0.4588 0.6500 0.0143 0.0497 1 0.0247
-0.0420 -0.0578 0.0064 -0.0560 0.0712 0.0262 0.0454 0.1019 0.0247 1

Tabla 1: Estadistica de las frecuencias identificadas con EFDD sobre 690 registros de aceleracion-tiempo

4 OPTIMIZACION DE PARAMETROS UTILIZANDO CAMPOS ALEATORIOS

Las incertidumbres en los pardmetros geométricos y mecanicos de consideran con campos
aleatorios a lo largo del elemento estructural. Por definicién, un campo aleatorio consta de un
numero infinito de variables aleatorias. El tratamiento numérico requiere su aproximacién en
términos de un nimero finito de variables aleatorias, es decir se debe discretizar el campo, y
que cada variable aleatoria represente el comportamiento promedio del campo aleatorio en un
subdominio espacial, ver Figura 5, (Moller et al., 2024).

La viga se discretiza en 11 elementos, y con los valores relevados de los pardmetros
geométricos y valores nominales de los pardmetros mecénicos, se realizaron 30 simulaciones
de campo aleatorio para cada pardmetro, utilizando la funcién de correlacién exponencial con
longitud de correlacion R = 400 ¢m y pardmetro v = 1.5. Ademds, para tener en cuenta
incertidumbres en los valores medios de los pardmetros, se construyeron otros 4 grupos de 30
simulaciones de los campos aleatorios, a partir de valores medios -20%, -10%, +10% y +20%
con respecto a los nominales para abarcar limites inferiores y superiores amplios. En la Tabla
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2 se presentan los valores numéricos. Los parametros 11 y 12 corresponden a las condiciones
de borde en los extremos y entonces no varian a lo largo de la viga.

Figura 5: Realizacion de un campo aleatorio unidimensional y su aproximacién con elementos promedio

Parametros Unidades Valores medios - Grupos
A B N C D
1 cl (cm) 8.8 9.9 11 12.1 13.2
2 c2 (cm) 8.8 9.9 11 12.1 13.2
3 el (cm) 4.8 5.4 6 6.6 7.2
4 e2 (cm) 7.6 8.55 9.5 10.45 11.4
5 e3 (cm) 8.4 9.45 10.5 11.55 12.6
6 d (cm) 16 18 20 22 24
7 h (cm) 57.6 60.8 64 67.2 70.4
8 E vigas (Mpa) 20000 25000 30000 35000 40000
9 E losas (Mpa) 15000 17500 20000 22500 25000
10 P. esp. (kN/m3) 255 24.8 24 23.2 22.5
11 Kapinf (kNcm/rad) 100 125000 250000 375000 500000
12 Kap lat (kN/cm) 600 800 1000 2000 3000
Tabla 2: Datos de los grupos para generar los campos aleatorios
Grupos Identificadas exp
A B N C D EFDD SSli
Modo Valores medios de frecuencias (Hz)

1 5.208 6.129 6.886 7.562 8.172 6.463 6.562
2 5.385 6.462 7.555 8.663 9.761 9.068 9.016
3 8.641 10.419 12.302 14.298 16.340 12.530 12.498
4 11909 14.770 17.607 20.190 22.462 20.676  21.002
5 13.453 16.307 19.082 21.732 24.260 22.399  22.441
6 21505 26.287 30.933 35100 39.028 36.078  36.664
7 24522 28.006 32.054 36.703 41.512 40.359  40.227
8 27.534 33.539 39.743 45954 51.484 42,936  44.451
9 29.685 36.430 43.613 50.925 58.128 51.109 52.864
10 34.331 41.978 49.545 56.461 62.718 54.003 56.716

Tabla 3: Valores medios de las frecuencias
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Para cada grupo definido en la Tabla 2: A, B, N, C, D, y para cada uno de los 30 campos
aleatorios generados para los pardmetros, se calcularon las 10 primeras frecuencias naturales
no amortiguadas con el modelo numérico descripto en el punto 2, Figura 3.

Los valores medios de 30 resultados en cada grupo se presentan en la Tabla 3, junto con los
valores medios de las frecuencias identificadas de las mediciones experimentales utilizando la
identificacién en el dominio de las frecuencias EFDD y en el dominio del tiempo SSI. Para
una mejor visualizacion, se los muestra en la Figura 6.

Se observa en la tabla 3 que los resultados entre las dos técnicas de identificacién, EFDD y
SSI, presentan valores muy similares con diferencias minimas. Ademads, dichos resultados
identificados de las mediciones experimentales se aproximan al Grupo C de campos
aleatorios, ver Figura 6, con excepcion de la primera y tercera frecuencia mds cercana a los
valores nominales, Grupo N.

70 .
&0 [ Grupo & g '
| Grupo B - '_ﬁ
50 = Grupo N e o |
) B  GupoC s .l
= 40 & Grupo D x5 = s
z —8— Exp EFDD o L .
g 30 —®— ExpSsl . .
[ IS 20 n
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I = 5
0
o 1 2 3 4 =] -] T g o 10

Modos

Figura 6: Valores medios de frecuencias en cada grupo de campo aleatorio, y de la identificacién

5 OPTIMIZACION DE PARAMETROS POR BUSQUEDA ALEATORIA

5.1 Aproximacion de las frecuencias del modelo por redes neuronales

En la Tabla 4 se definen los limites inferior y superior de los 12 parametros geométricos y
mecanicos del modelo descripto en la seccidon 2. Dentro de esos limites, con la técnica de
disefio de experimentos, se obtienen 448 combinaciones aleatorias de los pardmetros. Esa
cantidad permite un maximo de 25 neuronas en la capa intermedia de las redes neuronales,
que es suficiente para lograr una buena aproximacion. Para cada una de las 448
combinaciones de los 12 parametros, se calculan las 10 primeras frecuencias naturales de
vibracion. Los resultados discretos se aproximan con la funcidén continua de la red neuronal
multicapa, con una capa intermedia y con un solo resultado en la capa de salida. Los factores
de peso de la red se optimizan con la técnica de retro-propagacion de errores. Entonces, se
entrenan 10 redes, una por cada frecuencia, mostrandose en la Figura 7, como ejemplo, la
aproximacion para las frecuencias 1 y 9.

Se observa que la correlacion entre los resultados discretos (Target) y los obtenidos con la
red neuronal (Neural Network) es muy cercano a 1.00, y los desvios estandar del error relativo
estan por debajo del 1%. Similares resultados se obtienen para las otras frecuencias.
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Parédmetros Unidades Limites
Inf Sup
1 cl (cm) 8.3 13.7
2 c2 (cm) 8.3 13.7
3 el (cm) 4.5 7.5
4 e2 (cm) 7.2 11.9
5 e3 (cm) 8.0 13.2
6 d (cm) 15.2 25.0
7 h (cm) 55.9 72.5
8 E\igas (Mpa) 19000 42000
9 E losas (Mpa) 14250 26250
10 P. esp. (kN/m3) 22 26
11 Kapinf (kNcm/rad) 100 500000
12 Kap lat (kN/cm) 500 3000

Tabla 4: Limites de los pardmetros para las redes neuronales

Frecuencia f1 Frecuencia f9
10.0 : : : 55 : : : :
§ T R e B S
e R e A - s ! ! ! !
o o i i i i
= £ 45 oo R Sk Tt
Z 7.0 foooecbeo z ! ! !
< : T 40 fooeedeg b oo
o 1 o 1 1
-] ' =) ' '
Y 55 F----- 7 AR L-- O, = 0.00423- u ! ! G, = 0.00434
! ' Corr =0.9991 35 3 Sl Tt Corr = 0.9990 -
4.0 ! ! ! 30 ! ! ! !
4.0 5.5 7.0 8.5 10.0 30 35 40 45 50 55
TARGET TARGET

Figura 7: Aproximacién de las frecuencias 1 y 9 por redes neuronales

5.2 Funcion objetivo

La funcién objetivo a minimizar es

(D

2
NF - _
FOBJ(’Y) = z w; fl,exp fl,num (Y)
i=1 fi,exp

Donde NF es el ntiimero de frecuencias, NF = 10, fi.y son las frecuencias identificadas de
las mediciones experimentales, f; ..(Y) son las frecuencias calculadas numéricamente con las
redes neuronales, funcién del conjunto de parametros y, y w; factores de peso, que en este
trabajo se consideraron iguales para todas las frecuencias.
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5.3 Algoritmo de optimizacion

Es un algoritmo de busqueda aleatoria, sin cdlculo de gradientes. El procedimiento
numérico se desarrolla dentro del dominio de los pardmetros y, ver Tabla 4. Se elige
arbitrariamente un punto inicial de anclaje yo y se evalda la funcién objetivo FOBJ con (1).

Se seleccionan n = M1 combinaciones de y en las proximidades de fyo, eligiendo
aleatoriamente un valor para cada uno de los pardmetros » con j = 1, 12, dentro de una “zona
de busqueda” Xyo; £ R1 (Lsup(j) - Linf(j)). Para cada una de las n combinaciones se evalia
FOBJ. Si FOBJ minimo entre las n combinaciones es menor al del anclaje, la correspondiente
combinacion pasa a ser el nuevo punto de anclaje y el proceso se reinicia.

Si entre las M1 combinaciones no se encuentra alguna con FOBJ menor al del anclaje, se
densifica la bisqueda seleccionando M2 combinaciones dentro de la zona de bisqueda hasta
que se obtenga la primera con FOBJ menor al del anclaje.

Si todavia no se encuentra alguna combinacién con FOBJ menor al del anclaje, se amplia
el radio de buisqueda a R2 = R1 + DR. Se seleccionan m combinaciones de y en el hiper-
volumen agregado manteniendo la densidad inicial anterior y con mdximo M2. La primera de
las m combinaciones que tenga un FOBJ menor al del anclaje es retenida y utilizada como el
nuevo anclaje. Esta ampliacién del limite de bisqueda se repite NAMP veces y tiene por
objetivo reducir la posibilidad de encontrar un minimo local.

El proceso finaliza cuando ya no se encuentre una combinacién de los pardmetros y con
FOBJ menor al del anclaje. En esta aplicacion numérica: R1 = 0.15, DR = 0.05, M1 = 1000,
M2 = 4000, NAMP = 3.

5.4 Resultados

Se obtienen resultados del proceso de optimizacién de varias formas. (a) Con cada uno de
los 690 conjuntos de frecuencias identificadas de las mediciones experimentales, ver seccion
3, utilizando EFDD y SSI; (b) Con la estadistica de las frecuencias identificadas, ver Tabla 1,
se generan aleatoriamente 100 conjuntos de frecuencias, también para ambos tipos de
identificacion EFDD y SSI, y para cada caso se obtiene el conjunto 6ptimo de parametros.

En todos los casos se aplicé el algoritmo de optimizacién de acuerdo a lo descripto en la
seccidn 5.3 y comenzando desde 5 puntos iniciales diferentes, eligiendo los valores medios de
grupos A, B, N, C y D de la Tabla 2 que estdn bien distantes entre ellos.

Para cada estrategia: (a) y (b), y para cada método de identificaciéon: EFDD y SSI, a partir
de todos los resultados se construye la estadistica de los conjuntos 6ptimos de los pardmetros,
cuyos valores medios y coeficientes de variacion se presentan en la Tabla 5. Ademads, se
calculan las matrices de coeficientes de correlacion entre los pardmetros. El histograma de
todos los resultados para el pardmetro i y el ajuste de las funciones de densidad de
probabilidades se muestran en la Figura 8 a manera de ejemplo. Tanto la funciéon Normal
como la Uniforme pasan la prueba de bondad de ajuste de Kolgomorov- Smirnov.

5.5 Analisis de resultados

Los valores medios de los pardmetros Optimos son casi iguales entre los obtenidos
utilizando los 690 conjuntos de frecuencias identificadas de las mediciones experimentales y
los que resultan de 100 conjuntos de frecuencias generadas aleatoriamente con la estadistica
de las frecuencias identificadas. Estos resultados se observan tanto para la metodologia de
identificacion en el dominio de las frecuencias EFDD como en el dominio del tiempo SSI.
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La importancia de este resultado es que se pueden generar tantos conjuntos como sean
necesarios para caracterizar los pardimetros del modelo, a partir de muchos menos conjuntos
de frecuencias identificadas.

55 Parameiro Parametro
' =M ormal SI :
— iR S 09 m Frecuencia
¥=58.50 o8 | =—MNomal ]|
] S=0.96 5 = Inif I
£ 02 307 8=56.83
w Eos b=60.17
" )
E = 0.5
3 = 04
s 0.1 g
w ; 0.3
| )
‘/ et
560 576 59.2 607 623 0 = 623
h (em) h {cm)
Figura 8: Histograma y funciones de probabilidades para el pardmetro &
Parametros Unidades Método de identificacion EFDD Método de identificacion SSI
690 frecidentif [100 frec generadas| 690 frecidentif [100 frec generadas
Medio cv Medio cv Medio cv Medio cv
1 cl (cm) 10.25 0.1111 10.32  0.1072 10.59 0.1135 10.58 0.1137
2 c2 (cm) 11.38 0.0834 11.35 0.0827 11.23 0.0878 11.27 0.0856
3 el (cm) 7.36  0.0160 7.38 0.0149 7.36  0.0213 7.32  0.0322
4 e2 (cm) 11.77 0.0097 11.78 0.0087 11.79 0.0092 11.79  0.0087
5 e3 (cm) 11.03 0.1395 10.97 0.1412 10.83 0.1552 10.74 0.1545
6 d (cm) 23.03  0.0837 23.12  0.0799 22.65 0.0940 22.72  0.0950
7 h (cm) 58.50 0.0164 58.56 0.0175 59.76  0.0384 59.95 0.0391
8 E vigas (Mpa) 40564 0.0392| 40517 0.0410| 40445 0.0388| 40290 0.0460
9 E losas (Mpa) 25783 0.0204| 25759 0.0216] 25639 0.0270| 25643 0.0256
10  P.esp. (kN/m3) 22.91 0.0341 2290 0.0329 22.80 0.0396 22.72  0.0359
11 Kapinf (kNcm/rad)] 326382 0.3677| 320263 0.3980| 287973 0.4476| 277773 0.4513
12 Kaplat (kN/cm) 647 0.3150 645 0.2912 726  0.6386 724 0.7021
FOBJ Minimo 3.77E-03  0.1183|3.79E-03 0.1174(5.53E-03  0.4580(5.66E-03  0.6424

Tabla 5: Estadistica de los valores 6ptimos de los parametros

Los coeficientes de variacion son variables entre los pardmetros. En general estdn por
debajo del 10%, con la excepcion de la altura del cordon €3 que llega al 15%, y los parametros
de rigidez de los resortes que simulan la restriccion en los apoyos, con valores entre 30 y 40%,
y mayores para la restriccion lateral con la identificacion SSI. Se puede interpretar que su
incidencia no es tan significativa y diferentes valores conducen a soluciones 6ptima similares.

El valor medio de la funcién objetivo minima u 6ptima es del orden de 107, que estd
indicando una muy buena aproximacion de las frecuencias del gemelo digital calculadas con
los pardmetros optimizados con las frecuencias identificadas de las mediciones.
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6 CONCLUSIONES

Se presentd la optimizacién de los pardmetros de un modelo numérico (gemelo digital), a
partir de la identificacion de propiedades dindmicas obtenidas de registros aceleracion tiempo
de una viga de 16m de luz de un entrepiso prefabricado. Se tienen en cuenta incertidumbres en
las mediciones, en la accién que produce las vibraciones, aproximaciones en los métodos de
identificacién, que originan variaciones en cada conjunto de frecuencias. Hay también
incertidumbres y aproximaciones en el modelo numérico, variaciones en las dimensiones
geométricas, propiedades de los materiales y condiciones de borde. Se presentaron dos formas
de optimizacién de los parametros del modelo, y las conclusiones encontradas son:

- Campos aleatorios: considera pardmetros variables a lo largo de la viga, con valores
medios asignados. Los valores medios de las frecuencias calculadas con los pardmetros del
Grupo C son los mds aproximados a los valores medios de las frecuencias identificadas.

- Optimizacién por buisqueda aleatoria: es superador del anterior, tiene la ventaja que los
pardmetros del modelo se optimizan minimizando una funcién objetivo, sin asignar valores
medios, logrando ajustar mejor las diferencias con las frecuencias identificadas. Como
desventaja, no considera la variacién de los pardmetros a lo largo de la viga.

- En cualquiera de los dos procedimientos, lo mds importante es el tratamiento estadistico
de los pardmetros del modelo, considerados como variables aleatorias. Es una manera racional
de propagar hacia atrds las incertidumbres de las mediciones y del modelo, hacia las
incertidumbres de los pardmetros.
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