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Resumen. Para monitorear la salud estructural (SHM), se han desarrollado diferentes metodologías 

donde la mayoría se basan en el registro de vibraciones ambientales. De los registros aceleración-

tiempo se identifican los parámetros dinámicos. Se construye un modelo numérico paramétrico y los 

parámetros se optimizan para que las predicciones del modelo se aproximen a los valores 

identificados de las mediciones registradas. Se consideran las incertidumbres en las características 

físicas de la estructura, como dimensiones, propiedades de materiales y condiciones de borde, también 

las incertidumbres debido a errores de medición y aproximaciones de los métodos de identificación. 

Se investiga en este trabajo una estructura formada por vigas prefabricadas de 16m de luz. Se analiza 

una de las vigas excitada con impactos controlados y registrando la historia aceleración – tiempo en la 

etapa de vibración libre. A partir de los múltiples registros se obtiene la estadística de las frecuencias 

utilizando 2 métodos de identificación de sistemas. En el proceso de optimización se minimiza el 

cuadrado de la diferencia relativa entre las frecuencias del modelo y las identificadas. Se construye así 

un modelo probabilístico para estudiar el comportamiento estocástico de la estructura analizada. 

Keywords: Uncertainties, Structural dynamics, Parameter optimization, Concrete beams. 

Abstract. Different methodologies have been developed for structural health monitoring (SHM), most 

of which are based on recording ambient vibrations. Dynamic parameters are identified from the 

acceleration-time recordings. A parametric numerical model is constructed, and the parameters are 

optimized so that the model prediction approximates the values identified from the recorded 

measurements. Uncertainties in the physical characteristics of the structure, such as dimensions, 

material properties, and boundary conditions, are considered, as well as uncertainties due to 

measurement errors and approximations of the identification methods. This work investigates a 

structure consisting of 16-m-span precast beams. One of the beams is excited by controlled impacts 

and recording the acceleration-time history in the free vibration stage. From the multiple recordings, 

frequency statistics are obtained using two system identification methods. In the optimization process, 

the square of the relative difference between the model and identified frequencies is minimized. A 

probabilistic model is thus constructed to study the stochastic behavior of the analyzed structure. 
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1 INTRODUCCIÓN 

Un tema de importancia, por el impacto sobre los programas de mantenimiento de 

infraestructura como por ejemplo puentes, es el seguimiento de la evolución del estado de 

daño denominado “monitoreo de la salud estructural” (SHM). Una técnica es estudiar las 

propiedades modales del sistema bajo vibraciones ambientales o condiciones normales de 

operación, que se denomina “Análisis Modal Operacional” (OMA), (Brincker, 2015; Hizal, 

2021; Mostafaei et al. 2025; Okur et al., 2025; Huang et al., 2025). Presenta ventajas en el 

bajo costo, en la velocidad de implementación, y utiliza los avances en los equipos de registro 

y en los métodos computacionales. 

La identificación de las propiedades modales de un sistema estructural consiste en 

correlacionar las características dinámicas de un modelo matemático con las propiedades 

físicas del sistema identificadas de mediciones experimentales (Peeters et al., 1999). La 

excitación sobre la estructura debe tener características de ruido blanco, es decir, su energía 

distribuida en un amplio rango de frecuencias que cubra todos los modos de interés para que 

sus contribuciones puedan ser capturadas por las mediciones. 

El modelo numérico, actualmente denominado “gemelo digital” (DTM), se construye con 

parámetros que se optimizan para que las predicciones del modelo se aproximen a los datos 

registrados (Nicoletti et al., 2023). Se presentan varias limitaciones: (a) El número de sensores 

instalados es limitado, entonces no es posible obtener una resolución espacial detallada; (b) 

Están presentes incertidumbres en las mediciones, simplificaciones y aproximaciones del 

modelo propuesto, variaciones en las dimensiones geométricas, propiedades de los materiales, 

condiciones de borde, y también aproximaciones en los métodos numéricos de identificación. 

Entonces, los parámetros del modelo también tendrán incertidumbres y cada uno se debe 

caracterizar como variable aleatoria con su función de densidad de probabilidades, valor 

medio, desvío estándar, y correlación entre los parámetros. Así se puede generar un modelo 

paramétrico con incertidumbres a utilizar en predicciones probabilísticas, como por ejemplo 

estimar probabilidades de estados de daño (Feng et al., 2020, Möller et al., 2024).  

Se presenta en este trabajo la generación de un modelo paramétrico con incertidumbres de 

una viga de hormigón pretensado de 16m de luz perteneciente a un entrepiso prefabricado, 

todavía sin las terminaciones, lo que permitió estudiar el elemento estructural individual. 

2 ELEMENTO ESTRUCTURAL 

La Figura 1 muestra una vista superior parcial con los puntos de medición y 3 

acelerómetros instalados, y otra vista desde abajo desde el nivel inferior. La sección recta con 

la denominación de los parámetros geométricos se presenta en la Figura 2. 

Para el modelo numérico, presentado en la Figura 3, se utilizaron 3904 elementos de 

cáscara plana con 1688 nodos y 10128 grados de libertad. Las vigas transversales de los 

extremos están apoyadas en los pórticos soporte, y la restricción elástica de esos vínculos se 

representa con resortes rotacionales y lineales. 

Los otros parámetros a optimizar son el módulo de elasticidad de las vigas Eviga, el módulo 

de elasticidad de la losa Elosa, el peso específico del material, y las rigideces de los resortes 

rotacionales krot y longitudinal klong. 

3 MEDICIONES EXPERIMENTALES – IDENTIFICACIÓN  

La viga es excitada con el impacto de una carga vertical puntual, que contiene energía en un 

amplio rango de frecuencias, para generar luego un estado de vibración libre y registrar la 

respuesta de aceleración – tiempo en 44 puntos como se muestra en la Figura 4. Se utilizan 3 
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acelerómetros de bajo costo organizados en 23 arreglos (setups) manteniendo puntos fijos que 

permiten luego ensamblar los resultados de los 44 puntos, ver Lucero et al. (2025). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 1: Vista superior e inferior de la viga pretensada prefabricada 

 

 

 

 

 

 

 

 

 

 

 
Figura 2: Sección recta y parámetros geométricos 

  

 

 

 

 

 

 

 
Figura 3: Modelo numérico discretizado con elementos de cáscara plana 

 

 

 

 

 

 
Figura 4: Planta de la viga con los puntos de medición y de impactos 
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De los registros aceleración – tiempo se identifican las frecuencias naturales no 

amortiguadas, las relaciones de amortiguamiento y las formas modales de los 10 primeros 

modos de vibración de la estructura aplicando dos metodologías: (a) Identificación por 

descomposición en el dominio de las frecuencias mejorado (EFDD); (b) Identificación por 

sub-espacios estocásticos en el dominio del tiempo (SSI), ver Lucero et al. (2025). 

Para la optimización de los parámetros del modelo se utilizan las frecuencias naturales no 

amortiguadas. Se aplicaron 10 impactos en cada uno de los 23 setups, registrando las 3 

componentes x, y, z, resultando 690 conjuntos de las primeras 10 frecuencias naturales para 

cada técnica de identificación EFDD y SSI. 

Hay incertidumbres o errores presentes en las mediciones, diferencias en la energía 

entregada en cada uno de los 10 impactos, aproximaciones en los métodos de identificación, 

que originan variaciones en cada conjunto de frecuencias. Estas incertidumbres se tienen en 

cuenta con la estadística de los 690 conjuntos en cada metodología, presentándose en la Tabla 

1 la correspondiente a EFDD. Resultados similares, pero no iguales, se obtienen con SSI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabla 1: Estadística de las frecuencias identificadas con EFDD sobre 690 registros de aceleración-tiempo  

4 OPTIMIZACIÓN DE PARÁMETROS UTILIZANDO CAMPOS ALEATORIOS  

Las incertidumbres en los parámetros geométricos y mecánicos de consideran con campos 

aleatorios a lo largo del elemento estructural. Por definición, un campo aleatorio consta de un 

número infinito de variables aleatorias. El tratamiento numérico requiere su aproximación en 

términos de un número finito de variables aleatorias, es decir se debe discretizar el campo, y 

que cada variable aleatoria represente el comportamiento promedio del campo aleatorio en un 

subdominio espacial, ver Figura 5, (Möller et al., 2024). 

La viga se discretiza en 11 elementos, y con los valores relevados de los parámetros 

geométricos y valores nominales de los parámetros mecánicos, se realizaron 30 simulaciones 

de campo aleatorio para cada parámetro, utilizando la función de correlación exponencial con 

longitud de correlación R = 400 cm y parámetro  = 1.5. Además, para tener en cuenta 

incertidumbres en los valores medios de los parámetros, se construyeron otros 4 grupos de 30 

simulaciones de los campos aleatorios, a partir de valores medios -20%, -10%, +10% y +20% 

con respecto a los nominales para abarcar límites inferiores y superiores amplios. En la Tabla 

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 5 (Hz) f 6 (Hz) f 7 (Hz) f 8 (Hz) f 9 (Hz) f 10 (Hz)

Valores medios : 6.4627 9.0684 12.5297 20.6759 22.3991 36.0779 40.3586 42.9357 51.1093 54.0027

Desvíos estándar : 0.0779 0.0653 0.0283 0.0882 0.0850 0.0573 0.2264 0.2403 0.0998 0.2156

Coef de variación : 0.0121 0.0072 0.0023 0.0043 0.0038 0.0016 0.0056 0.0056 0.0020 0.0040

Matriz de coeficientes 1 -0.0570 0.1059 0.0373 0.1995 0.2451 0.0445 -0.0126 0.1139 -0.0420

de correlación -0.0570 1 0.0203 0.0822 -0.0467 -0.0175 -0.0387 -0.0263 -0.0132 -0.0578

0.1059 0.0203 1 0.0253 0.3617 0.4147 0.0243 -0.0615 0.3672 0.0064

0.0373 0.0822 0.0253 1 0.0288 0.1565 -0.1016 0.0049 0.2582 -0.0560

0.1995 -0.0467 0.3617 0.0288 1 0.6456 0.0550 0.0505 0.4588 0.0712

0.2451 -0.0175 0.4147 0.1565 0.6456 1 -0.0052 0.0774 0.6500 0.0262

0.0445 -0.0387 0.0243 -0.1016 0.0550 -0.0052 1 -0.0886 0.0143 0.0454

-0.0126 -0.0263 -0.0615 0.0049 0.0505 0.0774 -0.0886 1 0.0497 0.1019

0.1139 -0.0132 0.3672 0.2582 0.4588 0.6500 0.0143 0.0497 1 0.0247

-0.0420 -0.0578 0.0064 -0.0560 0.0712 0.0262 0.0454 0.1019 0.0247 1
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2 se presentan los valores numéricos. Los parámetros 11 y 12 corresponden a las condiciones 

de borde en los extremos y entonces no varían a lo largo de la viga. 

 

 

 

 

 

 

 

 

 
Figura 5: Realización de un campo aleatorio unidimensional y su aproximación con elementos promedio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabla 2: Datos de los grupos para generar los campos aleatorios   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabla 3: Valores medios de las frecuencias 

  

 

  

    

 

 

1̂x  2x̂  

3x̂  

4x̂  
ixzx ˆ),(  

1Z  2Z  3Z  
4Z  

    Parámetros Unidades        Valores medios - Grupos Coef de 

A B N C D variación

1 c1 (cm) 8.8 9.9 11 12.1 13.2 0.07

2 c2 (cm) 8.8 9.9 11 12.1 13.2 0.07

3 e1 (cm) 4.8 5.4 6 6.6 7.2 0.07

4 e2 (cm) 7.6 8.55 9.5 10.45 11.4 0.07

5 e3 (cm) 8.4 9.45 10.5 11.55 12.6 0.07

6 d (cm) 16 18 20 22 24 0.07

7 h (cm) 57.6 60.8 64 67.2 70.4 0.05

8 E vigas (Mpa) 20000 25000 30000 35000 40000 0.05

9 E losas (Mpa) 15000 17500 20000 22500 25000 0.05

10 P. esp. (kN/m3) 25.5 24.8 24 23.2 22.5 0.03

11 K ap inf (kNcm/rad) 100 125000 250000 375000 500000

12 K ap lat (kN/cm) 600 800 1000 2000 3000

Grupos Identificadas exp

A B N C D EFDD SSI

Modo       Valores medios de frecuencias (Hz)

1 5.208 6.129 6.886 7.562 8.172 6.463 6.562

2 5.385 6.462 7.555 8.663 9.761 9.068 9.016

3 8.641 10.419 12.302 14.298 16.340 12.530 12.498

4 11.909 14.770 17.607 20.190 22.462 20.676 21.002

5 13.453 16.307 19.082 21.732 24.260 22.399 22.441

6 21.505 26.287 30.933 35.100 39.028 36.078 36.664

7 24.522 28.006 32.054 36.703 41.512 40.359 40.227

8 27.534 33.539 39.743 45.954 51.484 42.936 44.451

9 29.685 36.430 43.613 50.925 58.128 51.109 52.864

10 34.331 41.978 49.545 56.461 62.718 54.003 56.716
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Para cada grupo definido en la Tabla 2: A, B, N, C, D, y para cada uno de los 30 campos 

aleatorios generados para los parámetros, se calcularon las 10 primeras frecuencias naturales 

no amortiguadas con el modelo numérico descripto en el punto 2, Figura 3. 

Los valores medios de 30 resultados en cada grupo se presentan en la Tabla 3, junto con los 

valores medios de las frecuencias identificadas de las mediciones experimentales utilizando la 

identificación en el dominio de las frecuencias EFDD y en el dominio del tiempo SSI. Para 

una mejor visualización, se los muestra en la Figura 6. 

Se observa en la tabla 3 que los resultados entre las dos técnicas de identificación, EFDD y 

SSI, presentan valores muy similares con diferencias mínimas. Además, dichos resultados 

identificados de las mediciones experimentales se aproximan al Grupo C de campos 

aleatorios, ver Figura 6, con excepción de la primera y tercera frecuencia más cercana a los 

valores nominales, Grupo N.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 6: Valores medios de frecuencias en cada grupo de campo aleatorio, y de la identificación 

5 OPTIMIZACIÓN DE PARÁMETROS POR BÚSQUEDA ALEATORIA  

5.1 Aproximación de las frecuencias del modelo por redes neuronales 

En la Tabla 4 se definen los límites inferior y superior de los 12 parámetros geométricos y 

mecánicos del modelo descripto en la sección 2. Dentro de esos límites, con la técnica de 

diseño de experimentos, se obtienen 448 combinaciones aleatorias de los parámetros. Esa 

cantidad permite un máximo de 25 neuronas en la capa intermedia de las redes neuronales, 

que es suficiente para lograr una buena aproximación. Para cada una de las 448 

combinaciones de los 12 parámetros, se calculan las 10 primeras frecuencias naturales de 

vibración. Los resultados discretos se aproximan con la función continua de la red neuronal 

multicapa, con una capa intermedia y con un solo resultado en la capa de salida. Los factores 

de peso de la red se optimizan con la técnica de retro-propagación de errores. Entonces, se 

entrenan 10 redes, una por cada frecuencia, mostrándose en la Figura 7, como ejemplo, la 

aproximación para las frecuencias 1 y 9. 

Se observa que la correlación entre los resultados discretos (Target) y los obtenidos con la 

red neuronal (Neural Network) es muy cercano a 1.00, y los desvíos estándar del error relativo 

están por debajo del 1%. Similares resultados se obtienen para las otras frecuencias. 
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Tabla 4: Límites de los parámetros para las redes neuronales   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 7: Aproximación de las frecuencias 1 y 9 por redes neuronales 

5.2 Función objetivo 

La función objetivo a minimizar es 
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Donde NF es el número de frecuencias, NF = 10, fi,exp son las frecuencias identificadas de 

las mediciones experimentales, fi,num() son las frecuencias calculadas numéricamente con las 

redes neuronales, función del conjunto de parámetros , y wi factores de peso, que en este 

trabajo se consideraron iguales para todas las frecuencias. 

4.0

5.5

7.0

8.5

10.0

4.0 5.5 7.0 8.5 10.0

N
E

U
R

A
L
 N

E
T
W

O
R

K

TARGET

Frecuencia f1

se r = 0.00423

Corr = 0.9991

30

35

40

45

50

55

30 35 40 45 50 55

N
E

U
R

A
L
 N

E
T
W

O
R

K

TARGET

Frecuencia f9

se r = 0.00434

Corr = 0.9990

    Parámetros Unidades          Límites

Inf Sup

1 c1 (cm) 8.3 13.7

2 c2 (cm) 8.3 13.7

3 e1 (cm) 4.5 7.5

4 e2 (cm) 7.2 11.9

5 e3 (cm) 8.0 13.2

6 d (cm) 15.2 25.0

7 h (cm) 55.9 72.5

8 E vigas (Mpa) 19000 42000

9 E losas (Mpa) 14250 26250

10 P. esp. (kN/m3) 22 26

11 K ap inf (kNcm/rad) 100 500000

12 K ap lat (kN/cm) 500 3000
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5.3 Algoritmo de optimización 

Es un algoritmo de búsqueda aleatoria, sin cálculo de gradientes. El procedimiento 

numérico se desarrolla dentro del dominio de los parámetros , ver Tabla 4. Se elige 

arbitrariamente un punto inicial de anclaje 0 y se evalúa la función objetivo FOBJ con (1).   

Se seleccionan n = M1 combinaciones de  en las proximidades de 0, eligiendo 

aleatoriamente un valor para cada uno de los parámetros j con j = 1, 12, dentro de una “zona 
de búsqueda” X0j ± R1 (Lsup(j) - Linf(j)). Para cada una de las n combinaciones se evalúa 

FOBJ. Si FOBJ mínimo entre las n combinaciones es menor al del anclaje, la correspondiente 

combinación pasa a ser el nuevo punto de anclaje y el proceso se reinicia. 

Si entre las M1 combinaciones no se encuentra alguna con FOBJ menor al del anclaje, se 

densifica la búsqueda seleccionando M2 combinaciones dentro de la zona de búsqueda hasta 

que se obtenga la primera con FOBJ menor al del anclaje. 

Si todavía no se encuentra alguna combinación con FOBJ menor al del anclaje, se amplía 

el radio de búsqueda a R2 = R1 + DR. Se seleccionan m combinaciones de  en el hiper-

volumen agregado manteniendo la densidad inicial anterior y con máximo M2. La primera de 

las m combinaciones que tenga un FOBJ menor al del anclaje es retenida y utilizada como el 

nuevo anclaje. Esta ampliación del límite de búsqueda se repite NAMP veces y tiene por 

objetivo reducir la posibilidad de encontrar un mínimo local. 

El proceso finaliza cuando ya no se encuentre una combinación de los parámetros  con 

FOBJ menor al del anclaje. En esta aplicación numérica: R1 = 0.15, DR = 0.05, M1 = 1000, 

M2 = 4000, NAMP = 3. 

5.4 Resultados 

Se obtienen resultados del proceso de optimización de varias formas. (a) Con cada uno de 

los 690 conjuntos de frecuencias identificadas de las mediciones experimentales, ver sección 

3, utilizando EFDD y SSI; (b) Con la estadística de las frecuencias identificadas, ver Tabla 1, 

se generan aleatoriamente 100 conjuntos de frecuencias, también para ambos tipos de 

identificación EFDD y SSI, y para cada caso se obtiene el conjunto óptimo de parámetros. 

En todos los casos se aplicó el algoritmo de optimización de acuerdo a lo descripto en la 

sección 5.3 y comenzando desde 5 puntos iniciales diferentes, eligiendo los valores medios de 

grupos A, B, N, C y D de la Tabla 2 que están bien distantes entre ellos. 

Para cada estrategia: (a) y (b), y para cada método de identificación: EFDD y SSI, a partir 

de todos los resultados se construye la estadística de los conjuntos óptimos de los parámetros, 

cuyos valores medios y coeficientes de variación se presentan en la Tabla 5. Además, se 

calculan las matrices de coeficientes de correlación entre los parámetros. El histograma de 

todos los resultados para el parámetro h y el ajuste de las funciones de densidad de 

probabilidades se muestran en la Figura 8 a manera de ejemplo. Tanto la función Normal 

como la Uniforme pasan la prueba de bondad de ajuste de Kolgomorov- Smirnov. 

5.5 Análisis de resultados 

Los valores medios de los parámetros óptimos son casi iguales entre los obtenidos 

utilizando los 690 conjuntos de frecuencias identificadas de las mediciones experimentales y 

los que resultan de 100 conjuntos de frecuencias generadas aleatoriamente con la estadística 

de las frecuencias identificadas. Estos resultados se observan tanto para la metodología de 

identificación en el dominio de las frecuencias EFDD como en el dominio del tiempo SSI.  
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La importancia de este resultado es que se pueden generar tantos conjuntos como sean 

necesarios para caracterizar los parámetros del modelo, a partir de muchos menos conjuntos 

de frecuencias identificadas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 8: Histograma y funciones de probabilidades para el parámetro h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabla 5: Estadística de los valores óptimos de los parámetros   

Los coeficientes de variación son variables entre los parámetros. En general están por 

debajo del 10%, con la excepción de la altura del cordón e3 que llega al 15%, y los parámetros 

de rigidez de los resortes que simulan la restricción en los apoyos, con valores entre 30 y 40%, 

y mayores para la restricción lateral con la identificación SSI. Se puede interpretar que su 

incidencia no es tan significativa y diferentes valores conducen a soluciones óptima similares. 

El valor medio de la función objetivo mínima u óptima es del orden de 10-3, que está 

indicando una muy buena aproximación de las frecuencias del gemelo digital calculadas con 

los parámetros optimizados con las frecuencias identificadas de las mediciones.  

    Parámetros Unidades      Método de identificación EFDD      Método de identificación SSI

   690 frec identif 100 frec generadas    690 frec identif 100 frec generadas

Medio CV Medio CV Medio CV Medio CV

1 c1 (cm) 10.25 0.1111 10.32 0.1072 10.59 0.1135 10.58 0.1137

2 c2 (cm) 11.38 0.0834 11.35 0.0827 11.23 0.0878 11.27 0.0856

3 e1 (cm) 7.36 0.0160 7.38 0.0149 7.36 0.0213 7.32 0.0322

4 e2 (cm) 11.77 0.0097 11.78 0.0087 11.79 0.0092 11.79 0.0087

5 e3 (cm) 11.03 0.1395 10.97 0.1412 10.83 0.1552 10.74 0.1545

6 d (cm) 23.03 0.0837 23.12 0.0799 22.65 0.0940 22.72 0.0950

7 h (cm) 58.50 0.0164 58.56 0.0175 59.76 0.0384 59.95 0.0391

8 E vigas (Mpa) 40564 0.0392 40517 0.0410 40445 0.0388 40290 0.0460

9 E losas (Mpa) 25783 0.0204 25759 0.0216 25639 0.0270 25643 0.0256

10 P. esp. (kN/m3) 22.91 0.0341 22.90 0.0329 22.80 0.0396 22.72 0.0359

11 K ap inf (kNcm/rad) 326382 0.3677 320263 0.3980 287973 0.4476 277773 0.4513

12 K ap lat (kN/cm) 647 0.3150 645 0.2912 726 0.6386 724 0.7021

FOBJ Mínimo 3.77E-03 0.1183 3.79E-03 0.1174 5.53E-03 0.4580 5.66E-03 0.6424
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6 CONCLUSIONES 

Se presentó la optimización de los parámetros de un modelo numérico (gemelo digital), a 

partir de la identificación de propiedades dinámicas obtenidas de registros aceleración tiempo 

de una viga de 16m de luz de un entrepiso prefabricado. Se tienen en cuenta incertidumbres en 

las mediciones, en la acción que produce las vibraciones, aproximaciones en los métodos de 

identificación, que originan variaciones en cada conjunto de frecuencias. Hay también 

incertidumbres y aproximaciones en el modelo numérico, variaciones en las dimensiones 

geométricas, propiedades de los materiales y condiciones de borde. Se presentaron dos formas 

de optimización de los parámetros del modelo, y las conclusiones encontradas son: 

- Campos aleatorios: considera parámetros variables a lo largo de la viga, con valores 

medios asignados. Los valores medios de las frecuencias calculadas con los parámetros del 

Grupo C son los más aproximados a los valores medios de las frecuencias identificadas. 

- Optimización por búsqueda aleatoria: es superador del anterior, tiene la ventaja que los 

parámetros del modelo se optimizan minimizando una función objetivo, sin asignar valores 

medios, logrando ajustar mejor las diferencias con las frecuencias identificadas. Como 

desventaja, no considera la variación de los parámetros a lo largo de la viga. 

- En cualquiera de los dos procedimientos, lo más importante es el tratamiento estadístico 

de los parámetros del modelo, considerados como variables aleatorias. Es una manera racional 

de propagar hacia atrás las incertidumbres de las mediciones y del modelo, hacia las 

incertidumbres de los parámetros. 
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