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Abstract. Causal Decomposition based on Empirical Mode Decomposition (EMD) has proved to be
a powerful tool for identifying causal relationships between time series. This method is based on the
phase coherence of the respective oscillatory modes of the signals, known as Intrinsic Mode Functions
(IMFs). Hence, a correct alignment of the respective modes of the signals is crucial. Unlike other
methods, Causal Decomposition makes no assumption of linearity in the studied signals. Therefore,
it is widely applicable to time series emerging from complex systems for which linearity hypothesis
generally fail to hold. The decomposition in oscillatory modes is achieved with noise-assisted versions
of EMD, which are known to improve the performance of the decomposition, reducing the mode mixing.
However, adding noise introduces a stochastic element in the result, that is henceforth treated as a random
variable. In the present work we introduce our Python version of the Causal Decomposition algorithm,
which incorporates refinements for the selection of the decomposition based on energy considerations.
These improvements aim to reduce the outlier results attributable to an incorrect mode alignment. The
algorithm was tested on synthetic time series generated using a model of a mechanical oscillator with
two masses and two modulated nonlinear forcing terms. A subsequent statistical analysis over multiple
realizations showed less dispersion and fewer outliers compared to the previous version of the algorithm.
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1 INTRODUCTION

The seminal work by Huang et al. (1998) presented the idea of decomposing a signal in a
data-driven fashion known as Empirical Mode Decomposition (EMD). Instead of traditional
approaches such as Fourier analysis, in which the signal is projected into a predefined basis,
EMD outputs a collection of Intrinsic Mode Functions (IMFs) which are directly obtained from
the oscillations of the original signal. Hence, the resulting decomposition is expected to bear
a more significant and physically sound relation to the data. Since then, EMD has undergone
many developments in several directions, ranging from technical improvements of the basic al-
gorithm to multivariate extensions. Among the former, we mention the noise-assisted versions
of EMD. It was shown that the addition of noise to the signal and the subsequent average over
multiple realizations emphasizes the dyadic filter properties of EMD (Flandrin et al., 2004).
As to multivariate extensions, they allow the simultaneous decomposition of several signals.
Among the variety of available techniques nowadays, we resorted to Noise-Assisted Multivari-
ate EMD (NA-MEMD) (Rehman and Mandic, 2010, 2011).

There are several procedures for detecting and quantifying causality. The classical Granger
causality, for instance, is a method that explores a linear process relating two time series. It
quantifies a kind of predictive power and precedence relation between the variables. Other con-
cepts of causality might be better suited when studying complex and highly non-linear systems.
A recent proposal by Yang et al. (2018) has shown that EMD can be used to detect and quantify
causal relations among signals. The method is based on the phase coherence of the signals under
study. The influence of a particular oscillatory mode can be detected by comparison of phase
coherence before and after its removal. Hence, the importance of a correct “mode alignment” of
the respective IMFs in the studied signals. Given that phase coherence is calculated throughout
the whole signal, the causality detected by the method does not imply a temporal precedence.
Instead, it denotes an imbrication of the two signals which decreases when an oscillatory mode
is absent. Therefore, this mode must somehow bear a causal effect on the other signal. We
introduce our own Python version of the Causal Decomposition (CD) algorithm, adapted and
translated from the original Matlab version (Yang, 2018). Given that decompositions are noise-
assisted, each realization is slightly different from the others, making it necessary to perform
a statistical analysis of the results. (Muszkats et al., 2024). Moreover, our new version of the
algorithm does a previous selection of acceptable decompositions, leaving aside those that do
not meet the mode alignment requirement. This improvement drastically reduces the number of
outlier results.

The method is applied to synthetic series obtained from a classical model of a frictionless
mechanical oscillator with two masses and non-linear external forcing. Given that the causal
relations are known beforehand, this model provides a benchmark case for any causal detection
and quantification scheme.
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2 METHODS
2.1 Empirical Mode Decomposition

The basic EMD algorithm decomposes the input signal x(¢) into a sum of IMFs ¢;(t), plus a
remainder term r(t)

x:ch+7° (1)
j=1

This process is known as sifting and usually requires several iterations until a stopping criterion
is met. To be considered proper IMFs, the oscillatory modes must meet two basic requirements:

1. The number of extrema and the number of zeros must be the same, or at most differ by
one.

2. The local maxima and minima determine their respective envelopes. The mean of these
envelopes must be zero at any point.

Each IMF can be expressed as a cosine function modulated both in amplitude and phase:

cj(t) = a;(t) cos [p;(t)] (2)

This expression in turn allows a sensible definition of instantaneous frequency as the derivative
.o d

of the phase: w = %~.

Among the various alternative and improved EMD algorithms since its first implementation,
we adopted the Noise-Assisted Multivariate EMD (NA-MEMD). Multivariate techniques allow
for the simultaneous decomposition of several signals, whereas noise assistance improves the
filtering properties of the process. Both features greatly improve the results in Causal Decom-
position. Instead of the original Matlab algorithm for NA-MEMD (Rehman and Mandic, 2011),
we resourced to a Python translation (de Souza e Silva, 2018).

2.2 Causal Decomposition

The first step to establish a causal relation between two time series s; and ss is to define a
measure of phase coherence between their respective IMFs s, s9;:

T
coh (sy;, 89;) = l/ 22t 3)

T Jo
That is, the phase difference Ap;(t) = @2;(t) — ¢1;(t) is summed all through the interval [0, 7’|
of the signals. If Ay,(t) remains fairly constant, the result will approximate 1. If, instead,
Ay;(t) varies randomly, the sums will tend to cancel out and the result will approximate 0.
Therefore, the closer phase coherence is to 1, the more related the signals are. To measure
the influence that s; exerts upon s, at a particular IMF j, the jth IMF of s, is removed and
the resulting signal is decomposed. The resulting IMFs are denoted s,,. If the jth IMF was
influenced by s;, phase coherence must diminish after removal. Hence, causal strength from s;
over s, in the jth scale is defined as a weighted distance between coherences before and after
the removal of the jth IMF:

n 1/2
varyi - varqg ’ 2
D (s1; — s9;) = - coh (s, Sox) — coh (sq, s 4)
(s15 = 525) {;1 ST Varlp_vamp[ (S1k, S26) (S1k, o)) }
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where var;;, refers to the variance of the corresponding IMF. D (sq; — slj) is defined analo-
gously and both values are compared to decide if there is a differential causality.

For Eq. 4 to render reasonable results, the decomposition of both time series must be ade-
quate in the sense of mode alignment. That is, the respective modes of both signals should be
of similar frequency (at least on average). As already stated, mode alignment greatly improves
by using multivariate decomposition. However, some decompositions could fail to meet this
requirement, mostly after the removal of a particular IMF. It has been observed that some com-
ponents of the signal “leak” to IMFs which were previously noisy low-amplitude components.
To avoid these undesirable decompositions, we established energy thresholds that the IMFs
must meet. For example, in Fig. 4 most of the energy (the sum of the squared components) of
the original signals is allocated in IMFs 5, 6, 7. Hence, every subsequent decomposition will be
required to have at least 95% of its energy allocated in these same IMFs, or otherwise it will be
discarded.

2.3 Statistical Analysis

Noise-assisted techniques imply that every realization of the decomposition is slightly dif-
ferent from the others. Hence, both D (s1; — s3;) and D (sy; — s1;) measurements are re-
garded as random variables. In the following, n observations of each one of these magni-
tudes will be abbreviated as D1, D, ...D,,. Although the added noise is Gaussian, the resulting
causal strengths undergo several transformations, and their distribution does not necessarily
result normal. Without any further assumption about their actual distribution, the random vari-
ables Dy, D, ...D,, can be safely treated as independent and identically distributed, because
they emerge from different realizations of the same process. Their mean and variance will be
respectively denoted ;. and o2. What we are dealing with is their mean value D after n realiza-
tions of the process. If n is sufficiently large, this mean value is a new random variable derived
from a large number sample. In these circumstances, the Central Limit Theorem implies that the
distribution of D tends to be normal (Devore, 2009) with parameters /15 = x4 and a]% = o%/n.
Given that the purpose of this work is to establish a differential causality between D (s1; — s2;)
and D (sg; — s1;), we resourced to confidence intervals and hypothesis testing.

The confidence intervals for the sample mean with an approximate 100(1 — /)% confidence
level are
d— 2ap —=yd + 2ajp - —= (5)
/2 \/ﬁ; a/2 \/ﬁ
where d is the actual sample mean, 2,/ is the value for which the normal standard distribution
accumulates 1 — a/2 of the probability and s is the sample standard deviation.

The test of hypothesis is applied to a new random variable that measures the differential
causality D (s1; — s2;) — D (sg; — s1;) for each pair of decompositions. Once again, the
Central Limit Theorem guarantees that the mean value of large samples of this variable tends to
have a normal distribution. The null hypothesis H is that D (s1; — S2j) — D (s9; — s1;) =0
whereas the alternative hypothesis H,, is that D (si; — s2;) — D (s2; = s1;) > 0. The test
statistic is _
_d—0

4= 5m

(6)
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where d and s are, respectively, the sample mean and standard deviation of the variable

D (s1; = s25) — D (sg; — s1j). Considering an « significance level, the null hypothesis is
rejected if the test statistic results greater than z, (the value for which the normal standard
distribution accumulates 1 — « of the probability).

3 SYSTEM DESCRIPTION

k
F1(t) J\/\/\/\/L FZ(t)

T T2

Figure 1: Mechanical oscillator with external forcing. The coordinates z; and x5 measure displacement from
equilibrium.

The CD algorithm is tested on the synthetical series emerging from the classical mechanical
oscillator shown in Fig. 1. The governing equations model an undamped system with a linear
spring:

my -2 =k (e —x1) + Fi(t)

(7)
meo - 1’,2/ = —k (ZEQ — 171) + Fg(t)
The natural (angular) frequency of the system is wy = mil + m% The parameters are chosen
so that the period for the free vibrations of the system is approximately 1:
mp =my =1 k=20 3

The external forces are modulated both in frequency and amplitude. As shown in Fig. 2, they
behave like a non-linear influence that moves around a central frequency. The parameters are
chosen so that F} is the high-frequency forcing, with a carrier frequency that doubles the natural
frequency of the system, whereas the carrier frequency of F5 halves it. In other words, F} has a
period that fluctuates about 0.5, and F5 has a period that fluctuates about 2.

F1(t) Fa(t)
60
40 401
20 20
0- 0.
-201 .
_40 4
_40 4
_60 1 T T T T T T T T
2 4 6 8 2 4 6 8
t t

Figure 2: Forces are modulated both in amplitude and frequency. Fj has a carrier frequency that doubles the
natural frequency: Fi(t) = [50 + 10 cos (0.4wot)] cos [2wpt + 0.5sin (0.1wgt)]. The carrier frequency of F is
half the natural frequency: F»(t) = [50 + 10 cos (0.1wpt)] cos [0.5wot + 0.5 sin (0.025wqt)]
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Figure 3: Numerical solution of the system. Resulting positions, velocities and accelerations.

4 RESULTS

The differential equations are solved numerically with a Runge-Kutta scheme, and the results
are plotted in Fig. 3. The resulting accelerations exhibit high and low-frequency oscillations
attributable to the respective forcings. These influences become patent once the signals are de-
composed. As seen in Fig. 4, a; has a high-frequency component that neatly follows F;. On
the other hand, the influence of the low-frequency component F5 seems to be milder. This fact
is attributable to its indirect effect, mediated by the spring.

|IMF | D(Fy — a1) | D(ay = Fy) [s[D(Fy = a1)] [ s[D (a1 — F1)] |

Table 1: Mean causal force and standard deviation s after 200 realizations. No energy considerations were taken
into account. Notice that, as shown in Fig. 4, IMF 5 represents the high frequency component of the system (period

5 0.575 0.410 0.154 0.152
6 0.010 0.007 0.040 0.022
7 0.007 0.010 0.019 0.039

0.5), IMF 6 the free vibrations (period 1), and IMF 7 the low frequency (period 2).

’IMF H D(F1—>a1) ‘ D(a1—>F1) ‘ S[D(F1—>CL1)] ‘ S[D<a1—>F1)] ‘

5 0.609 0.450 0.115 0.136
6 0.002 0.005 0.001 0.002
7 0.004 0.004 0.002 0.002

Table 2: Mean causal force and standard deviation s after 200 realizations with the improved algorithm. Those
decompositions in which relative energies depart from prescribed values were discarded. IMF 5 represents the
high frequency component of the system (period 0.5), IMF 6 the free vibrations (period 1), and IMF 7 the low
frequency (period 2).
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Figure 4: Multivariate (simultaneous) decomposition of F} and a;. Some IMFs are omitted because they are low
amplitude components attributable to numerical artifacts. Only the relevant IMFs (according to their energy) are
shown. IMF 5 has a stable instantaneous frequency of about 2. It is associated with the high-frequency forcing and
a neatly reflects this fact. The influence of the other mass and force is observable in the rest of the a; components.

As expected, Causal Decomposition detects a differential causality between the respective
IMFs 5 of F; and a;. Table 1 shows the mean results after 200 realizations without energy
considerations. Results exhibit a relatively high deviation due to outlier values, as explicitly
seen in the boxplot of Fig. 5. Table 2 shows the same calculations with the improved algorithm,
considering the relative energy of each IMF.

Finally, the differential causality was checked both with confidence intervals and hypothesis
testing (after energy considerations). The confidence intervals in Fig. 6 exhibit a clear divide
between D (F; — aq) and D (a; — F1), with a 99% confidence level. Moreover, hypothesis
testing allows us to affirm that D (F} — a1) — D (a1 — F;) > 0 with a 0.01 significance level.
Therefore, we can be confident that force bears a differential causality upon acceleration.

Although not shown in detail, the influence of F;, over as parallels the already seen results.

F; was neatly proven to bear a differential causality upon as. This relation expresses itself in
the low-frequency component, that is, in IMF 7.
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IMF 5: causal strength before and after energy consideration

1.0
1 D(F1-a1)
_ _ [ D(a1—F1)
0.8 1 __ __
0.6 A
0.4
J o
0.2 1 o
0.0 T T T .
before after before after

Figure 5: Comparison of results before and after energy considerations. The box signals the first and third quartiles,
with an orange line for the median. The “whiskers” extend up to 1.5 of the interquartile range. Separate dots
represent outliers, which happen to be quite common if no energy considerations are taken into account. The
blue plots represent the distribution of D (F; — a1), while the red ones stand for D (a; — F7). In both cases
dispersion reduces after energy considerations.

IMF 5: Confidence Intervals for Causal Strength

H D(F;-a))
B D(a;—~F1)

0.40 0.45 0.50 0.55 0.60 0.65 0.70

Figure 6: Confidence intervals for a large sample (n = 200) of causal strengths (with energy considerations). The
confidence level is 99% and shows a neat differential causality of F; over a;.

S CONCLUSIONS

Given that causal relations are known beforehand, the mechanical oscillator has proven to be
a reliable benchmark to test the original method and its improved version with energy consid-
erations. While both methods detected the causal relations, the improved algorithm produced
fewer outliers and a more robust result. The new method, based on an energy threshold crite-
rion, discards decompositions leading to comparisons that make no sense.

We have restricted our study to the relation between a force and its nearest mass because it

provides a straightforward example of causality and illustrates the power of the method. How-
ever, it is possible to study other interactions among a1, as, F7, and F5. The relation between a,
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and a,, for instance, conveys no obvious causality and therefore requires a subtler interpretation.
These interactions resemble those in complex systems, where time series represent interwoven
phenomena.

In light of these promising results, the improved algorithm will in future research be applied
to time series emerging from complex interactions, such as the climate system.
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