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Abstract. Causal Decomposition based on Empirical Mode Decomposition (EMD) has proved to be

a powerful tool for identifying causal relationships between time series. This method is based on the

phase coherence of the respective oscillatory modes of the signals, known as Intrinsic Mode Functions

(IMFs). Hence, a correct alignment of the respective modes of the signals is crucial. Unlike other

methods, Causal Decomposition makes no assumption of linearity in the studied signals. Therefore,

it is widely applicable to time series emerging from complex systems for which linearity hypothesis

generally fail to hold. The decomposition in oscillatory modes is achieved with noise-assisted versions

of EMD, which are known to improve the performance of the decomposition, reducing the mode mixing.

However, adding noise introduces a stochastic element in the result, that is henceforth treated as a random

variable. In the present work we introduce our Python version of the Causal Decomposition algorithm,

which incorporates refinements for the selection of the decomposition based on energy considerations.

These improvements aim to reduce the outlier results attributable to an incorrect mode alignment. The

algorithm was tested on synthetic time series generated using a model of a mechanical oscillator with

two masses and two modulated nonlinear forcing terms. A subsequent statistical analysis over multiple

realizations showed less dispersion and fewer outliers compared to the previous version of the algorithm.
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1 INTRODUCTION

The seminal work by Huang et al. (1998) presented the idea of decomposing a signal in a

data-driven fashion known as Empirical Mode Decomposition (EMD). Instead of traditional

approaches such as Fourier analysis, in which the signal is projected into a predefined basis,

EMD outputs a collection of Intrinsic Mode Functions (IMFs) which are directly obtained from

the oscillations of the original signal. Hence, the resulting decomposition is expected to bear

a more significant and physically sound relation to the data. Since then, EMD has undergone

many developments in several directions, ranging from technical improvements of the basic al-

gorithm to multivariate extensions. Among the former, we mention the noise-assisted versions

of EMD. It was shown that the addition of noise to the signal and the subsequent average over

multiple realizations emphasizes the dyadic filter properties of EMD (Flandrin et al., 2004).

As to multivariate extensions, they allow the simultaneous decomposition of several signals.

Among the variety of available techniques nowadays, we resorted to Noise-Assisted Multivari-

ate EMD (NA-MEMD) (Rehman and Mandic, 2010, 2011).

There are several procedures for detecting and quantifying causality. The classical Granger

causality, for instance, is a method that explores a linear process relating two time series. It

quantifies a kind of predictive power and precedence relation between the variables. Other con-

cepts of causality might be better suited when studying complex and highly non-linear systems.

A recent proposal by Yang et al. (2018) has shown that EMD can be used to detect and quantify

causal relations among signals. The method is based on the phase coherence of the signals under

study. The influence of a particular oscillatory mode can be detected by comparison of phase

coherence before and after its removal. Hence, the importance of a correct “mode alignment” of

the respective IMFs in the studied signals. Given that phase coherence is calculated throughout

the whole signal, the causality detected by the method does not imply a temporal precedence.

Instead, it denotes an imbrication of the two signals which decreases when an oscillatory mode

is absent. Therefore, this mode must somehow bear a causal effect on the other signal. We

introduce our own Python version of the Causal Decomposition (CD) algorithm, adapted and

translated from the original Matlab version (Yang, 2018). Given that decompositions are noise-

assisted, each realization is slightly different from the others, making it necessary to perform

a statistical analysis of the results. (Muszkats et al., 2024). Moreover, our new version of the

algorithm does a previous selection of acceptable decompositions, leaving aside those that do

not meet the mode alignment requirement. This improvement drastically reduces the number of

outlier results.

The method is applied to synthetic series obtained from a classical model of a frictionless

mechanical oscillator with two masses and non-linear external forcing. Given that the causal

relations are known beforehand, this model provides a benchmark case for any causal detection

and quantification scheme.
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2 METHODS

2.1 Empirical Mode Decomposition

The basic EMD algorithm decomposes the input signal x(t) into a sum of IMFs cj(t), plus a

remainder term r(t)

x =
n

∑

j=1

cj + r (1)

This process is known as sifting and usually requires several iterations until a stopping criterion

is met. To be considered proper IMFs, the oscillatory modes must meet two basic requirements:

1. The number of extrema and the number of zeros must be the same, or at most differ by

one.

2. The local maxima and minima determine their respective envelopes. The mean of these

envelopes must be zero at any point.

Each IMF can be expressed as a cosine function modulated both in amplitude and phase:

cj(t) = aj(t) cos [φj(t)] (2)

This expression in turn allows a sensible definition of instantaneous frequency as the derivative

of the phase: ω = dφ
dt

.

Among the various alternative and improved EMD algorithms since its first implementation,

we adopted the Noise-Assisted Multivariate EMD (NA-MEMD). Multivariate techniques allow

for the simultaneous decomposition of several signals, whereas noise assistance improves the

filtering properties of the process. Both features greatly improve the results in Causal Decom-

position. Instead of the original Matlab algorithm for NA-MEMD (Rehman and Mandic, 2011),

we resourced to a Python translation (de Souza e Silva, 2018).

2.2 Causal Decomposition

The first step to establish a causal relation between two time series s1 and s2 is to define a

measure of phase coherence between their respective IMFs s1j, s2j:

coh (s1j, s2j) =
1

T

∫ T

0

ei∆φj(t)dt (3)

That is, the phase difference ∆φj(t) = φ2j(t)−φ1j(t) is summed all through the interval [0, T ]
of the signals. If ∆φj(t) remains fairly constant, the result will approximate 1. If, instead,

∆φj(t) varies randomly, the sums will tend to cancel out and the result will approximate 0.

Therefore, the closer phase coherence is to 1, the more related the signals are. To measure

the influence that s1 exerts upon s2 at a particular IMF j, the jth IMF of s2 is removed and

the resulting signal is decomposed. The resulting IMFs are denoted s′2k. If the jth IMF was

influenced by s1, phase coherence must diminish after removal. Hence, causal strength from s1
over s2 in the jth scale is defined as a weighted distance between coherences before and after

the removal of the jth IMF:

D (s1j → s2j) =

{

n
∑

k=1

var1k · var2k
∑n

p=1 var1p · var2p
[coh (s1k, s2k)− coh (s1k, s

′

2k)]
2

}1/2

(4)
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where varik refers to the variance of the corresponding IMF. D (s2j → s1j) is defined analo-

gously and both values are compared to decide if there is a differential causality.

For Eq. 4 to render reasonable results, the decomposition of both time series must be ade-

quate in the sense of mode alignment. That is, the respective modes of both signals should be

of similar frequency (at least on average). As already stated, mode alignment greatly improves

by using multivariate decomposition. However, some decompositions could fail to meet this

requirement, mostly after the removal of a particular IMF. It has been observed that some com-

ponents of the signal “leak” to IMFs which were previously noisy low-amplitude components.

To avoid these undesirable decompositions, we established energy thresholds that the IMFs

must meet. For example, in Fig. 4 most of the energy (the sum of the squared components) of

the original signals is allocated in IMFs 5, 6, 7. Hence, every subsequent decomposition will be

required to have at least 95% of its energy allocated in these same IMFs, or otherwise it will be

discarded.

2.3 Statistical Analysis

Noise-assisted techniques imply that every realization of the decomposition is slightly dif-

ferent from the others. Hence, both D (s1j → s2j) and D (s2j → s1j) measurements are re-

garded as random variables. In the following, n observations of each one of these magni-

tudes will be abbreviated as D1, D2, ...Dn. Although the added noise is Gaussian, the resulting

causal strengths undergo several transformations, and their distribution does not necessarily

result normal. Without any further assumption about their actual distribution, the random vari-

ables D1, D2, ...Dn can be safely treated as independent and identically distributed, because

they emerge from different realizations of the same process. Their mean and variance will be

respectively denoted µ and σ2. What we are dealing with is their mean value D̄ after n realiza-

tions of the process. If n is sufficiently large, this mean value is a new random variable derived

from a large number sample. In these circumstances, the Central Limit Theorem implies that the

distribution of D̄ tends to be normal (Devore, 2009) with parameters µD̄ = µ and σ2
D̄
= σ2/n.

Given that the purpose of this work is to establish a differential causality between D (s1j → s2j)
and D (s2j → s1j), we resourced to confidence intervals and hypothesis testing.

The confidence intervals for the sample mean with an approximate 100(1− α)% confidence

level are
(

d̄− zα/2 ·
s
√
n
, d̄+ zα/2 ·

s
√
n

)

(5)

where d̄ is the actual sample mean, zα/2 is the value for which the normal standard distribution

accumulates 1− α/2 of the probability and s is the sample standard deviation.

The test of hypothesis is applied to a new random variable that measures the differential

causality D (s1j → s2j) − D (s2j → s1j) for each pair of decompositions. Once again, the

Central Limit Theorem guarantees that the mean value of large samples of this variable tends to

have a normal distribution. The null hypothesis H0 is that D (s1j → s2j) −D (s2j → s1j) = 0
whereas the alternative hypothesis Ha is that D (s1j → s2j) − D (s2j → s1j) > 0. The test

statistic is

Z =
d̄− 0

s/
√
n

(6)
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where d̄ and s are, respectively, the sample mean and standard deviation of the variable

D (s1j → s2j) − D (s2j → s1j). Considering an α significance level, the null hypothesis is

rejected if the test statistic results greater than zα (the value for which the normal standard

distribution accumulates 1− α of the probability).

3 SYSTEM DESCRIPTION

Figure 1: Mechanical oscillator with external forcing. The coordinates x1 and x2 measure displacement from

equilibrium.

The CD algorithm is tested on the synthetical series emerging from the classical mechanical

oscillator shown in Fig. 1. The governing equations model an undamped system with a linear

spring:

m1 · x
′′

1 = k (x2 − x1) + F1(t)

m2 · x
′′

2 = −k (x2 − x1) + F2(t)
(7)

The natural (angular) frequency of the system is ω0 =
√

k
m1

+ k
m2

. The parameters are chosen

so that the period for the free vibrations of the system is approximately 1:

m1 = m2 = 1 k = 20 (8)

The external forces are modulated both in frequency and amplitude. As shown in Fig. 2, they

behave like a non-linear influence that moves around a central frequency. The parameters are

chosen so that F1 is the high-frequency forcing, with a carrier frequency that doubles the natural

frequency of the system, whereas the carrier frequency of F2 halves it. In other words, F1 has a

period that fluctuates about 0.5, and F2 has a period that fluctuates about 2.

2 4 6 8
t
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40

20

0

20

40
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F1(t)

2 4 6 8
t
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0

20

40

F2(t)

Figure 2: Forces are modulated both in amplitude and frequency. F1 has a carrier frequency that doubles the

natural frequency: F1(t) = [50 + 10 cos (0.4ω0t)] cos [2ω0t+ 0.5 sin (0.1ω0t)]. The carrier frequency of F2 is

half the natural frequency: F2(t) = [50 + 10 cos (0.1ω0t)] cos [0.5ω0t+ 0.5 sin (0.025ω0t)]
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Figure 3: Numerical solution of the system. Resulting positions, velocities and accelerations.

4 RESULTS

The differential equations are solved numerically with a Runge-Kutta scheme, and the results

are plotted in Fig. 3. The resulting accelerations exhibit high and low-frequency oscillations

attributable to the respective forcings. These influences become patent once the signals are de-

composed. As seen in Fig. 4, a1 has a high-frequency component that neatly follows F1. On

the other hand, the influence of the low-frequency component F2 seems to be milder. This fact

is attributable to its indirect effect, mediated by the spring.

IMF D (F1 → a1) D (a1 → F1) s [D (F1 → a1)] s [D (a1 → F1)]

5 0.575 0.410 0.154 0.152

6 0.010 0.007 0.040 0.022

7 0.007 0.010 0.019 0.039

Table 1: Mean causal force and standard deviation s after 200 realizations. No energy considerations were taken

into account. Notice that, as shown in Fig. 4, IMF 5 represents the high frequency component of the system (period

0.5), IMF 6 the free vibrations (period 1), and IMF 7 the low frequency (period 2).

IMF D (F1 → a1) D (a1 → F1) s [D (F1 → a1)] s [D (a1 → F1)]

5 0.609 0.450 0.115 0.136

6 0.002 0.005 0.001 0.002

7 0.004 0.004 0.002 0.002

Table 2: Mean causal force and standard deviation s after 200 realizations with the improved algorithm. Those

decompositions in which relative energies depart from prescribed values were discarded. IMF 5 represents the

high frequency component of the system (period 0.5), IMF 6 the free vibrations (period 1), and IMF 7 the low

frequency (period 2).
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Figure 4: Multivariate (simultaneous) decomposition of F1 and a1. Some IMFs are omitted because they are low

amplitude components attributable to numerical artifacts. Only the relevant IMFs (according to their energy) are

shown. IMF 5 has a stable instantaneous frequency of about 2. It is associated with the high-frequency forcing and

a1 neatly reflects this fact. The influence of the other mass and force is observable in the rest of the a1 components.

As expected, Causal Decomposition detects a differential causality between the respective

IMFs 5 of F1 and a1. Table 1 shows the mean results after 200 realizations without energy

considerations. Results exhibit a relatively high deviation due to outlier values, as explicitly

seen in the boxplot of Fig. 5. Table 2 shows the same calculations with the improved algorithm,

considering the relative energy of each IMF.

Finally, the differential causality was checked both with confidence intervals and hypothesis

testing (after energy considerations). The confidence intervals in Fig. 6 exhibit a clear divide

between D (F1 → a1) and D (a1 → F1), with a 99% confidence level. Moreover, hypothesis

testing allows us to affirm that D (F1 → a1)−D (a1 → F1) > 0 with a 0.01 significance level.

Therefore, we can be confident that force bears a differential causality upon acceleration.

Although not shown in detail, the influence of F2 over a2 parallels the already seen results.

F2 was neatly proven to bear a differential causality upon a2. This relation expresses itself in

the low-frequency component, that is, in IMF 7.
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Figure 5: Comparison of results before and after energy considerations. The box signals the first and third quartiles,

with an orange line for the median. The “whiskers” extend up to 1.5 of the interquartile range. Separate dots

represent outliers, which happen to be quite common if no energy considerations are taken into account. The

blue plots represent the distribution of D (F1 → a1), while the red ones stand for D (a1 → F1). In both cases

dispersion reduces after energy considerations.
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Causal Strength

IMF 5: Confidence Intervals for Causal Strength
D(F1 a1)
D(a1 F1)

Figure 6: Confidence intervals for a large sample (n = 200) of causal strengths (with energy considerations). The

confidence level is 99% and shows a neat differential causality of F1 over a1.

5 CONCLUSIONS

Given that causal relations are known beforehand, the mechanical oscillator has proven to be

a reliable benchmark to test the original method and its improved version with energy consid-

erations. While both methods detected the causal relations, the improved algorithm produced

fewer outliers and a more robust result. The new method, based on an energy threshold crite-

rion, discards decompositions leading to comparisons that make no sense.

We have restricted our study to the relation between a force and its nearest mass because it

provides a straightforward example of causality and illustrates the power of the method. How-

ever, it is possible to study other interactions among a1, a2, F1, and F2. The relation between a1
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and a2, for instance, conveys no obvious causality and therefore requires a subtler interpretation.

These interactions resemble those in complex systems, where time series represent interwoven

phenomena.

In light of these promising results, the improved algorithm will in future research be applied

to time series emerging from complex interactions, such as the climate system.
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