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Resumen. Este trabajo aborda un problema unidimensional de tipo Stefan a dos fases en un dominio

semi-infinito, que modela la fusión de un material sometido a una condición de frontera convectiva (tipo

Robin) en el borde fijo y a una fuente de calor interna de tipo exponencial. Esta formulación permite

representar de manera realista el intercambio térmico con el entorno, incorporando un mecanismo de

calentamiento adicional a través de una fuente dependiente de una variable de similaridad. Dicha fuente,

de tipo exponencial autosimilar, facilita la obtención de soluciones analíticas.

Se establece la existencia y unicidad de soluciones de tipo similaridad bajo ciertas condiciones sobre

los parámetros del problema. Como aplicación, se presenta un ejemplo computacional que simula la fu-

sión de parafina, mostrando buena concordancia con el comportamiento físico esperado.

Keywords: Stefan problem, Convective boundary condition, Heat source, Similarity-type solution.

Abstract. We consider a one-dimensional two-phase Stefan problem in a semi-infinite domain, modeling

the melting of a material imposing a convective (Robin-type) boundary condition at the fixed face and to

an internal exponential-type heat source. This formulation realistically represents thermal exchange with

the environment, incorporating an additional heating mechanism through a source depending on a simi-

larity variable. The exponential self-similar structure of the source allows for the derivation of analytical

solutions.

Existence and uniqueness of similarity-type solutions are established under certain conditions on the

problem parameters. As an application, a computational example simulating paraffin melting is presen-

ted, showing good agreement with the expected physical behavior.
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1. INTRODUCCIÓN

Los problemas de Stefan son un área de estudio relevante debido a su aparición en diversos

contextos importantes de la física, la ingeniería y la industria. Son esenciales para comprender

los fenómenos de transición de fase, especialmente en situaciones que involucran transferencia

de calor y procesos de solidificación o fusión (Alexiades y Solomon (1993); Crank (1984);

Gupta (2018); Lunardini (1991); Rubinstein (1971)). El objetivo de los problemas de Stefan

es describir las fases líquida y sólida de un material que experimenta un cambio de fase y

determinar la ubicación de la interfaz que separa estas fases, conocida como frontera libre.

En los problemas de Stefan, que modelan procesos de cambio de fase como la fusión, las

condiciones de contorno juegan un papel fundamental en la determinación de la evolución de la

temperatura y de la frontera libre. Una condición particularmente importante desde el punto de

vista físico es la condición convectiva, también conocida como condición de tipo Robin. Esta

condición describe situaciones en las que el flujo de calor en la frontera es proporcional a la

diferencia entre la temperatura del material y la temperatura del entorno, representando así un

mecanismo de intercambio térmico con un medio ambiente, es decir:

k
∂Φ

∂x
(0, t) = H(t) (Φ(0, t)− B∞) ,

donde Φ es la temperatura del material, k es la conductividad térmica, H(t) caracteriza la trans-

ferencia de calor en el borde fijo y B∞ representa la temperatura ambiente en x = 0. Este

tipo de condiciones ha sido ampliamente estudiada en distintos contextos Bougoffa y Khanfer

(2021),Briozzo y Natale (2019), Venturato et al. (2024), lo que evidencia su relevancia. En este

trabajo se considera el proceso de fusión de un material semi-infinito cuando se impone una

condición convectiva en el borde fijo x = 0 de la forma H(t) = h0√
t
, con h0 > 0.

Los problemas de Stefan con fuentes de calor internas surgen en la modelización de proce-

sos de cambio de fase en los cuales, además del mecanismo clásico de conducción de calor, se

considera la generación o absorción de energía dentro del material. Estas fuentes pueden repre-

sentar efectos de calentamiento o enfriamiento volumétrico debidos a procesos físicos, químicos

o biológicos. La inclusión de fuentes internas añade complejidad a la formulación matemática y

a la solución del problema, ya que afecta tanto la distribución de temperatura en ambas fases co-

mo la evolución de la frontera libre. En este contexto, diversos trabajos han abordado el análisis

de problemas de Stefan a dos fases con fuentes internas, estableciendo resultados de existencia

y unicidad de soluciones tipo similaridad, así como el estudio del comportamiento asintótico

de la frontera libre bajo distintas condiciones de contorno, Bollati et al. (2022), Briozzo et al.

(2007), McCord et al. (2016), Scott (1994).

En este trabajo, se realiza un estudio de un problema de Stefan unidimensional a dos fases

para la fusión de un material homogéneo semi-infinito (x ≥ 0) con una fuente de calor en cada

fase, donde se impone una condición convectiva o de tipo Robin en el borde fijo x = 0.

El propósito es determinar la distribución de la temperatura:

Φ(x, t) =

{
Φ2(x, t) si 0 < x < s(t), t > 0,
Φ1(x, t) si s(t) < x, t > 0,

(1)

y la frontera libre x = s(t), t > 0 que separa la fase sólida de la fase líquida. Una descripción
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matemática del modelo está dada por:

∂Φ2

∂t
= a22

∂2Φ2

∂x2
+

1

ρc2
g2(x, t), 0 < x < s(t), t > 0, (2)

∂Φ1

∂t
= a21

∂2Φ1

∂x2
+

1

ρc1
g1(x, t), x > s(t), t > 0, (3)

Φ1(x, 0) = −C < 0, x > 0, (4)

Φ1(+∞, t) = −C < 0, t > 0. (5)

k2
∂Φ2

∂x
(0, t) =

h0√
t
(Φ2(0, t)− B∞) , t > 0, (6)

k1
∂Φ1

∂x
(s(t), t)− k2

∂Φ2

∂x
(s(t), t) = ρ`ṡ(t), t > 0, (7)

Φ1(s(t), t) = Φ2(s(t), t) = 0, t > 0, (8)

s(0) = 0, (9)

para dos fuentes de calor internas dadas por:

gi(x, t) = (−1)i+1 ρ`
t
exp

{
−
(

x
2ai

√
t
+ di

)2
}
, i = 1, 2, (10)

donde las constantes positivas a2i = ki
ρci

y ci representan el coeficiente de difusión térmica y el

calor específico, respectivamente, para las fases i = 1 (región sólida) y i = 2 (región líquida),

di > 0, i = 1, 2, ` > 0 es el calor latente por unidad de masa, ρ > 0 es la densidad de masa

común a ambas fases, h0 > 0 es el coeficiente que caracteriza la tranferencia de calor en el

borde fijo x = 0 y B∞ > 0 es la temperatura ambiente.

El tipo de término fuente de calor dado por (10) es importante debido al uso de energía de

microondas, según lo indicado en Scott (1994).

Este artículo está organizado de la siguiente manera. En la Sección 2 se presenta la equiva-

lencia del problema (2)-(9) con un sistema de ecuaciones diferenciales ordinarias utilizando el

método de similaridad. La Sección 3 está orientada a la demostración de la existencia y unicidad

de solución bajo ciertas hipótesis sobre los datos del problema. Asimismo, se presenta un ejem-

plo computacional que ilustra la aplicabilidad del modelo al caso de la fusión de la parafina.

Finalmente, la Sección 4 expone las conclusiones principales del trabajo.

2. TRANSFORMACIÓN Y EQUIVALENCIA DEL PROBLEMA

En esta sección se prueba la existencia de solución de tipo similaridad del problema de Stefan

(2)-(9) y bajo ciertas hipótesis sobre los datos iniciales del problema, se demuestra unicidad de

solución.

Aplicando el método de inmobilización del dominio, se buscan soluciones del tipo

Φi(x, t) = θi(ω), i = 1, 2, (11)

donde la nueva variable ω es definida por

ω =
x

s(t)
. (12)

Entonces, la condición (7) se transforma en

k1θ
′
1(1)− k2θ

′
2(1) = ρ`s(t)ṡ(t), (13)
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y necesariamente s(t)ṡ(t) = cte., es decir, la frontera libre toma la forma:

s(t) = 2a2λ
√
t, t > 0, (14)

donde el parámetro adimensional λ > 0 que caracteriza a la frontera libre es desconocido.

Luego, se define

yi(η) = θi

(η
λ

)
, i = 1, 2, (15)

donde η = λω es la variable de similaridad.

Así, se obtiene inmediatamente el siguiente teorema que establece la equivalencia entre el

problema (2)-(9) con dos problemas diferenciales ordinarios acoplados:

Teorema 1 El problema de Stefan definido por (2)-(9) tiene una solución de tipo similaridad

(Φ, s) dada por:

Φ2(x, t) = y2

(
λx
s(t)

)
, 0 < x < s(t), t > 0, (16)

Φ1(x, t) = y1

(
λx
s(t)

)
, x > s(t), t > 0, (17)

s(t) = 2a2λ
√
t, t > 0, (18)

si y solo si las funciones y1 = y1(η) ∈ C2(λ,+∞), y2 = y2(η) ∈ C2(0, λ) y el parámetro

λ > 0 satisfacen los siguientes problemas diferenciales ordinarios:

y′′2 + 2ηy′2 =
4`

c2
exp

(
−(η + d2)

2
)
, 0 < η < λ, (19)

y2(λ) = 0, (20)

k2y
′
2(0) = 2a2h0 (y2(0)− B∞) , (21)

y

y′′1 + 2
a22
a21

ηy′1 = −
4a22`

a21c1
exp

(
−(a2

a1
η + d1)

2
)
, η > λ, (22)

y1(λ) = 0, (23)

y1(+∞) = −C, (24)

acoplados por la siguiente condición:

k1y
′
1(λ)− k2y

′
2(λ) = 2ρa22`λ. (25)

3. EXISTENCIA Y UNICIDAD DE SOLUCIÓN

Se probará a continuación que el problema diferencial ordinario (19)-(25) tiene única solu-

ción.

Teorema 2 Si

Ste1 ≥
√
π

d1 exp(d21)

(
1− exp(d21)erfc(d1)

)
, (26)

y

h0 > h2 :=
k2

a2Ste2

(
Ste1 −

√
π

d1 exp(d21)

(
1− exp(d21)erfc(d1)

))
, (27)
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entonces el problema (19)-(25) tiene por solución a

y2(η) = ϕ2(η) + Ψ2,h0
(η), 0 < η < λ, (28)

y1(η) = ϕ1(η) + Ψ1(η), η > λ, (29)

siendo λ la única solución de la ecuación

Gh0
(z) =

Ste2√
π
, z > 0, (30)

donde

ϕ2(η) = − `
√
π

d2c2

(
erf(η + d2)− erf(d2)− erf(η)

exp(d2
2
)

)
, (31)

Ψ2,h0
(η) =

B∞

√
π(erf(λ)−erf(η))−ϕ2(λ)

(

k2
a2h0

+
√
πerf(η)

)

k2
a2h0

+
√
πerf(λ)

, (32)

ϕ1(η) =
`
√
π

c1d1



erf

(
a2λ
a1

)
− erf

(
a2η
a1

)

exp
(

2a2λd1
a1

+ d21

)

+ erf
(

a2η
a1

+ d1

)
− erf

(
a2λ
a1

+ d1

)]
, (33)

Ψ1(η) = −C+ϕ1(+∞)

erfc

(

a2λ
a1

)

(
erf

(
a2η
a1

)
− erf

(
a2λ
a1

))
, (34)

ϕ1(+∞) = `
√
π

c1d1

[
erfc

(
a2λ
a1

+ d1

)
−

erfc

(

a2λ
a1

)

exp

(

d2
1
+
2a2λd1

a1

)

]
, (35)

Gh0
(z) =

F0,h0
(z)h1(z)

Q
(

a2
a1
z
) + F̃0,h0

(z), (36)

F0,h0
(z) =

(
k2

a2
√
πh0

+ erf(z)

)
z exp

(
z2
)
, (37)

h1(z) = Ste1 +
√
π

d1

[
erfc

(
a2
a1
z + d1

)
−

erfc
(

a2
a1

z
)

exp

(

d2
1
+
2a2d1
a1

z

)

]
, (38)

Q(z) =
√
π z exp

(
z2
)

erfc(z), (39)

F̃0,h0
(z) = F0,h0

(z) + erf(z+d2)−erf(d2)
d2

+ k2(1−exp(−2d2z))

a2d2h0

√
π exp(d22)

−
exp(−d2

2
−2d2z)erf(z)

d2
, (40)

siendo Ste1 =
c1 C
`

y Ste2 =
c2 B∞

`
los números de Stefan.

Demostración. La función definida por

F0(z) = zerf(z) exp
(
z2
)
, z > 0, (41)

es estrictamente creciente y verifica F0(0) = 0 y F0(+∞) = +∞. Luego, la función F0,h0
dada

por (37) puede expresarse como

F0,h0
(z) =

k2
a2
√
πh0

z exp
(
z2
)
+ F0(z), z > 0.
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Dicha función es estrictamente creciente y satisface F0,h0
(0) = 0 y F0,h0

(+∞) = +∞.

Por otro lado, teniendo en cuenta la hipótesis (26), resulta que la función h1 definida por (38)

es positiva y estrictamente creciente para todo z > 0 y satisface h1(0) ≥ 0 y h1(+∞) = Ste1.

También, por Gonzalez y Tarzia (1996), se tiene que la función Q definida por (39) es estric-

tamente creciente para todo z > 0 y verifica Q(0) = 0, Q(+∞) = 1 y Q′(0) =
√
π.

La función Gh0
dada por (36) puede reescribirse como

Gh0
(z) = W (z)

(
k2

a2h0

√
π
+ erf(z)

)
h1(z) + F̃0,h0

(z), (42)

donde

W (z) = z exp(z2)

Q
(

a2
a1

z
) , z > 0. (43)

Luego

G′
h0
(z) = W ′(z)

(
k2

a2h0

√
π
+ erf(z)

)
h1(z)

+W (z)
[(

k2
a2h0

√
π
+ erf(z)

)
h1(z)

]′
+ F̃ ′

0,h0
(z), (44)

con W ′(z) > 0 para todo z > 0.

Además, la función F̃0,h0
definida por (40) cumple con las siguientes propiedades

F̃0,h0
(0) = F0,h0

(0) = 0, F̃0,h0
(+∞) = +∞

y F̃0,h0
es estrictamente creciente para todo z > 0.

De todo la anterior, la función Gh0
es estrictamente creciente para todo z > 0 y satisface

Gh0
(0) ≥ 0, Gh0

(+∞) = +∞.

Finalmente, por hipótesis (27), se tiene que Gh0
(0) < Ste2√

π
lo que garantiza la existencia de

una única solución λ > 0 de la ecuación (30).

�

De los teoremas 1 y 2 sigue inmediatamente que

Teorema 3 Si se verifican las hipótesis (26) y (27), entonces el problema de Stefan definido por

(2)-(9) tiene una única solución de tipo similaridad, la cual está dada por (16)-(18), donde y2
y y1 están determinadas por (28) y (29), respectivamente, y λ > 0 es la única solución de la

ecuación (30).

Observación 1 Si la hipótesis (26) no se cumple, se puede garantizar la existencia de una

solución para el problema de Stefan (2)-(9).

Ejemplo 1 Se presenta un ejemplo computacional para ilustrar la aplicabilidad del problema

de Stefan a dos fases, considerando una condición convectiva impuesta en el borde fijo x = 0,

tal como se analiza en el Teorema 2. El ejemplo considera la fusión de la parafina, asumiendo

propiedades térmicas constantes, las cuales se detallan en la Tabla 1.

Si la temperatura inicial es −C = −250 K y la temperatura ambiente es B∞ = 300 K, si

se consideran los datos proporcionados en la Tabla 1 y las definiciones de difusividad térmica
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Fase Conductividad térmica Calor específico Calor latente Densidad

ki (W/m·K) ci (J/kg·K) ` (J/kg) ρ (kg/m3)

i = 1 0, 2 2200 200000 800
i = 2 0, 4 2200 200000 800

Tabla 1: Coeficientes térmicos de la parafina en la fases sólida i = 1 y líquida i = 2 .

Difusividad térmica fase 1 Difusividad térmica fase 2 Ste1 Ste2
a21 (m2/s) a22 (m2/s) – –

1, 13× 10−7 2, 27× 10−7 2, 75 3, 3

Tabla 2: Parámetros deducidos de la Tabla 1.

Caso d1 d2 h2 Hip. (27) h0 λj

– – (kg /Ks5/2) (kg/Ks5/2) –

1 0, 1 0, 05 237, 224 240, 224 0, 0921568
2 1, 5 0,05 677, 723 680,723 0, 1943095
3 0, 1 2 237, 224 240, 224 0, 1306197
4 1, 5 2 677, 723 680, 723 0, 2475820

Tabla 3: Valores de los coeficientes λj que caracterizan a las fronteras libre x = sj(t) para los casos j = 1, 2, 3, 4.

a2i =
ki
ρci

(i = 1, 2) y de los números de Stefan Ste1 y Ste2 definidos en el Teorema 2, se derivan

los parámetros listados en la Tabla 2.

Teniendo en cuenta los coeficientes térmicos obtenidos en la Tabla 1 y los parámetros de-

ducidos en la Tabla 2, en la Tabla 3 se obtiene la única solución de la ecuación (30) que

caracteriza a la frontera libre del problema (2)-(9) para cuatro casos diferentes (j = 1, 2, 3, 4)

de las constantes positivas d1 y d2.

Observación 2 Se puede estudiar el comportamiento asintónico cuando h0 → ∞, obtenien-

do que la solución del problema (2)-(9) converge a la solución del problema (2)-(5), (7)-(9)

imponiendo la condición de temperatura Φ2(0, t) = B∞ con t > 0 en el borde fijo x = 0.

4. CONCLUSIONES

Este trabajo ha propuesto un modelo unidimensional para describir el proceso de fusión de

un material en un dominio semi-infinito, bajo una condición convectiva en la frontera fija y la

influencia de una fuente de calor interna de tipo exponencial. Se ha demostrado la existencia y

unicidad de solución de tipo similaridad bajo ciertas condiciones sobre los datos del problema.

Además, se presentó un ejemplo computacional que ilustra la aplicabilidad del modelo al pro-

ceso de fusión de la parafina, validando su utilidad en contextos reales y proporcionando una

herramienta eficaz para simular estos fenómenos.

En general, los resultados obtenidos no solo aportan al estudio teórico de los problemas de

cambio de fase, sino que también abren la puerta a futuras aplicaciones prácticas en la ingeniería

y la física, particularmente en procesos que involucren materiales con características térmicas

complejas y condiciones de contorno variables.
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