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Resumen. Este trabajo aborda un problema unidimensional de tipo Stefan a dos fases en un dominio
semi-infinito, que modela la fusién de un material sometido a una condicién de frontera convectiva (tipo
Robin) en el borde fijo y a una fuente de calor interna de tipo exponencial. Esta formulacidon permite
representar de manera realista el intercambio térmico con el entorno, incorporando un mecanismo de
calentamiento adicional a través de una fuente dependiente de una variable de similaridad. Dicha fuente,
de tipo exponencial autosimilar, facilita la obtencién de soluciones analiticas.

Se establece la existencia y unicidad de soluciones de tipo similaridad bajo ciertas condiciones sobre
los parametros del problema. Como aplicacion, se presenta un ejemplo computacional que simula la fu-
sién de parafina, mostrando buena concordancia con el comportamiento fisico esperado.

Keywords: Stefan problem, Convective boundary condition, Heat source, Similarity-type solution.

Abstract. We consider a one-dimensional two-phase Stefan problem in a semi-infinite domain, modeling
the melting of a material imposing a convective (Robin-type) boundary condition at the fixed face and to
an internal exponential-type heat source. This formulation realistically represents thermal exchange with
the environment, incorporating an additional heating mechanism through a source depending on a simi-
larity variable. The exponential self-similar structure of the source allows for the derivation of analytical
solutions.

Existence and uniqueness of similarity-type solutions are established under certain conditions on the
problem parameters. As an application, a computational example simulating paraffin melting is presen-
ted, showing good agreement with the expected physical behavior.
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1. INTRODUCCION

Los problemas de Stefan son un area de estudio relevante debido a su aparicion en diversos
contextos importantes de la fisica, la ingenieria y la industria. Son esenciales para comprender
los fendmenos de transicion de fase, especialmente en situaciones que involucran transferencia
de calor y procesos de solidificacién o fusién (Alexiades y Solomon (1993); Crank (1984);
Gupta (2018); Lunardini (1991); Rubinstein (1971)). El objetivo de los problemas de Stefan
es describir las fases liquida y sélida de un material que experimenta un cambio de fase y
determinar la ubicacion de la interfaz que separa estas fases, conocida como frontera libre.

En los problemas de Stefan, que modelan procesos de cambio de fase como la fusidn, las
condiciones de contorno juegan un papel fundamental en la determinacion de la evolucién de la
temperatura y de la frontera libre. Una condicién particularmente importante desde el punto de
vista fisico es la condicion convectiva, también conocida como condicion de tipo Robin. Esta
condicién describe situaciones en las que el flujo de calor en la frontera es proporcional a la
diferencia entre la temperatura del material y la temperatura del entorno, representando asi un
mecanismo de intercambio térmico con un medio ambiente, es decir:

K92 (0,1) = H(t) (8(0,1) ~ Buo),
donde P es la temperatura del material, k es la conductividad térmica, H (t) caracteriza la trans-
ferencia de calor en el borde fijo y B, representa la temperatura ambiente en x = (. Este
tipo de condiciones ha sido ampliamente estudiada en distintos contextos Bougoffa y Khanfer
(2021),Briozzo y Natale (2019), Venturato et al. (2024), lo que evidencia su relevancia. En este
trabajo se considera el proceso de fusién de un material semi-infinito cuando se impone una
condicidn convectiva en el borde fijo x = 0 de la forma H (t) = \h/—%, con hy > 0.

Los problemas de Stefan con fuentes de calor internas surgen en la modelizacién de proce-
sos de cambio de fase en los cuales, ademas del mecanismo clasico de conduccidn de calor, se
considera la generacion o absorcion de energia dentro del material. Estas fuentes pueden repre-
sentar efectos de calentamiento o enfriamiento volumétrico debidos a procesos fisicos, quimicos
o bioldgicos. La inclusion de fuentes internas aflade complejidad a la formulacién matemaética y
a la solucién del problema, ya que afecta tanto la distribucidon de temperatura en ambas fases co-
mo la evolucién de la frontera libre. En este contexto, diversos trabajos han abordado el andlisis
de problemas de Stefan a dos fases con fuentes internas, estableciendo resultados de existencia
y unicidad de soluciones tipo similaridad, asi como el estudio del comportamiento asint6tico
de la frontera libre bajo distintas condiciones de contorno, Bollati et al. (2022), Briozzo et al.
(2007), McCord et al. (2016), Scott (1994).

En este trabajo, se realiza un estudio de un problema de Stefan unidimensional a dos fases
para la fusion de un material homogéneo semi-infinito (z > 0) con una fuente de calor en cada
fase, donde se impone una condicién convectiva o de tipo Robin en el borde fijo = 0.

El propésito es determinar la distribucion de la temperatura:

] Do(x,t) s O0<z<s(t), t>0,
(@,1) = { Oy(r.t) si s(t)<w  t>0, M

y la frontera libre x = s(t), t > 0 que separa la fase sélida de la fase liquida. Una descripcién
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matematica del modelo esta dada por:

0Py 0%, 1
5 = = a3 57 + IOTQQ(.T 1), 0<x<s(t),t>0, (2)

0B, L0, 1

B ~ U t Egl(x 1), x> s(t), t >0, (3)

Py (z,0) = -C <0, x>0, 4)

Oy (+00,t) = -C <0, t>0. (5)
o h

ka5 2(0,1) = \/0—(@2(0 t) = Bu) | t>0, (6)
o o .

kla—;@() t) — ks a;( s(t),t) = pls(t), t>0, (7)

Oy (s(t), 1) = Dy(s(t),t) =0, t>0, (8)

S(O) =0, )

para dos fuentes de calor internas dadas por:

2
gi(x,t) = (— 1)Z+1”Zexp{ <2aj;\/g+di> }, 1 =1,2, (10)

donde las constantes positivas a? = :T y ¢; representan el coeficiente de difusion térmica y el
calor especifico, respectivamente, para las fases ¢ = 1 (region sélida) y ¢+ = 2 (regién liquida),
d; > 0,7 =1,2,¢ > 0 es el calor latente por unidad de masa, p > 0 es la densidad de masa
comun a ambas fases, hy > 0 es el coeficiente que caracteriza la tranferencia de calor en el
borde fijo x = 0y B, > 0 es la temperatura ambiente.

El tipo de término fuente de calor dado por (10) es importante debido al uso de energia de
microondas, segun lo indicado en Scott (1994).

Este articulo estd organizado de la siguiente manera. En la Seccién 2 se presenta la equiva-
lencia del problema (2)-(9) con un sistema de ecuaciones diferenciales ordinarias utilizando el
método de similaridad. La Seccién 3 estd orientada a la demostracion de la existencia y unicidad
de solucidn bajo ciertas hipdtesis sobre los datos del problema. Asimismo, se presenta un ejem-
plo computacional que ilustra la aplicabilidad del modelo al caso de la fusion de la parafina.
Finalmente, la Seccién 4 expone las conclusiones principales del trabajo.

2. TRANSFORMACION Y EQUIVALENCIA DEL PROBLEMA

En esta seccidn se prueba la existencia de solucion de tipo similaridad del problema de Stefan
(2)-(9) y bajo ciertas hip6tesis sobre los datos iniciales del problema, se demuestra unicidad de
solucion.

Aplicando el método de inmobilizacién del dominio, se buscan soluciones del tipo

O, (z,t) =0;(w), i=1,2, (11)
donde la nueva variable w es definida por
w=—r. (12)
Entonces, la condicién (7) se transforma en

k101(1) — katly(1) = pls(t)5(2), (13)
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y necesariamente s(t)$(t) = cte., es decir, la frontera libre toma la forma:
s(t) = 2asAVt, t >0, (14)

donde el pardmetro adimensional A > 0 que caracteriza a la frontera libre es desconocido.
Luego, se define

yi(n) = 6; (g) L i=1.2, (15)

donde n = A\w es la variable de similaridad.
Asi, se obtiene inmediatamente el siguiente teorema que establece la equivalencia entre el
problema (2)-(9) con dos problemas diferenciales ordinarios acoplados:

Teorema 1 El problema de Stefan definido por (2)-(9) tiene una solucion de tipo similaridad
(®, s) dada por:

Oy(z,t) =y (;‘(—f) , 0<z<s(t),t>0, (16)
O, (2,1) = (%) , x> s(t), t >0, a17)
s(t) = 2a9 W/, t>0, (18)

si y solo si las funciones y; = y1(n) € C*(\,+00), yo = y2(n) € C?*(0,\) y el pardmetro
A > 0 satisfacen los siguientes problemas diferenciales ordinarios:

40

Yy + 2nyh = o XP (—(n+d)?), 0<n<A, (19)

y2()‘) = 07 (20)

kay5(0) = 2asho (y2(0) — Boo) (21)

y
2 2

y % o _4a2£ _(as 2
W 2 =l e ( (%20 + dy) ) , n> A, 22)
y1(A) =0, (23)
y1(+00) = =C, (24)

acoplados por la siguiente condicion:
kgt (N) = kayp(A) = 2pazeA. (25)

3. EXISTENCIA Y UNICIDAD DE SOLUCION

Se probara a continuacién que el problema diferencial ordinario (19)-(25) tiene Unica solu-
cion.

Teorema 2 Si

VT 2
Ste; > ———+ (1 — d?)erfe(d 26
€1 = dl exp(d%) ( eXp( l)er C( 1)) ) ( )
y
ho > ho 1= —a;gieQ (St61 — Tron (@ e‘x/j(d%) (1 — exp(d%)erfc(dﬁ)) , 27)
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entonces el problema (19)-(25) tiene por solucion a

Y2(n) = @a(n) + Vo, (1), 0<n<A, (28)
y1(n) = ¢1(n) + ¥1(n), n> A (29)

siendo X la vinica solucion de la ecuacion

Steg
Gho(2) = N z >0, (30)
donde
p2(n) = —BE (erf(n + dy) — erf(dy) — 210) (1)
Boo /(e (3) erf (1)~ 2 ) ok +vrert(n))
Uy () — eaf , (32)
2,ho (77) al;iOJrﬁerf()\)
NG erf <%> —erf (%)
901(7]) - cd 2a2Ad1 2
101 exp < 224 + d1>
+orf (J + dl) — erf (—A + dl)} , (33)
Uy (n) = _—Cﬂ’l(j‘xj) (erf (222) — erf (222)) (34)
erfc| === ! “
ag\
I o) erfc(w)
p1(+00) = O | erfe ( 22 4 dl) . al . (35)
exp(d%—l—T)
F, h ~
Gra(z) = Domll) o), (36)
o(:)
Fon(2) = _f_ +erf(z) | zexp (2%) (37)
0,ho aZﬁhO )
JT a erfc(g—22)
hi(2) = Stey + YT | erfe <—z n d1> S U (38)
exp(d%—&-Tz)
Q(z) = /7 zexp (2°) erfe(z), (39)
- erf(z —e —exp(—2daz exp( —d3—2daz Jerf(z)
FU,ho('z) = FO,ho (Z) + 1 +d2d)2 = + :jc(lihO\/I;eleJd(Qd%); B p( - da ) ! (40)
siendo Ste; = Cleo y Stey = % los niimeros de Stefan.
Demostracion. La funcién definida por
Fy(z) = zerf(z) exp (%), 2> 0, 41)

es estrictamente creciente y verifica F,(0) = 0y F{(400) = +o00. Luego, la funcién Fj j,, dada
por (37) puede expresarse como
ks

Fon(2) = aQﬁhozeXp (ZQ) + Fy(2), z> 0.
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Dicha funcién es estrictamente creciente y satisface Fp ,(0) = 0y Fy ,(+00) = +00.

Por otro lado, teniendo en cuenta la hipdtesis (26), resulta que la funcién h, definida por (38)
es positiva y estrictamente creciente para todo z > 0y satisface h;(0) > 0y hy(+00) = Ste;.

También, por Gonzalez y Tarzia (1996), se tiene que la funcién () definida por (39) es estric-
tamente creciente para todo z > 0y verifica Q(0) = 0, Q(+o0) = 1y Q'(0) = /7.

La funcién G, dada por (36) puede reescribirse como

Gro(2) = W(2) (25 + erf(2)) (=) + Fop(2), 42)
donde ,
W(z) = ﬁ_é’ z>0. (43)
Luego

ho(2) = W(2) (h2gs + erf(2)) In(2)

F W) [ (s +eri(2)) a(2)]| + Fog2), (44)

con W'(z) > 0 para todo z > 0.
Ademas, la funcion £y p,, definida por (40) cumple con las siguientes propiedades

ﬁO,ho (0) = FU,ho (O) = 07 ﬁO,h()(—i_OO) = +00

y Fo n, €s estrictamente creciente para todo z > (.
De todo la anterior, la funcién G}, es estrictamente creciente para todo z > 0y satisface

Gho(0) >0, Gpy(+00) = +00.

Finalmente, por hipétesis (27), se tiene que G, (0) < S% lo que garantiza la existencia de

una tnica solucion A > 0 de la ecuacién (30).
O

De los teoremas 1 y 2 sigue inmediatamente que

Teorema 3 Si se verifican las hipotesis (26) y (27), entonces el problema de Stefan definido por
(2)-(9) tiene una unica solucion de tipo similaridad, la cual estd dada por (16)-(18), donde -
y y1 estdn determinadas por (28) y (29), respectivamente, y A > 0 es la tinica solucion de la
ecuacion (30).

Observacion 1 Si la hipotesis (26) no se cumple, se puede garantizar la existencia de una
solucion para el problema de Stefan (2)-(9).

Ejemplo 1 Se presenta un ejemplo computacional para ilustrar la aplicabilidad del problema
de Stefan a dos fases, considerando una condicion convectiva impuesta en el borde fijo x = 0,
tal como se analiza en el Teorema 2. El ejemplo considera la fusion de la parafina, asumiendo
propiedades térmicas constantes, las cuales se detallan en la Tabla 1.

Si la temperatura inicial es —C' = —250 K y la temperatura ambiente es B,, = 300 K, si
se consideran los datos proporcionados en la Tabla 1 y las definiciones de difusividad térmica
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Fase | Conductividad térmica | Calor especifico | Calor latente | Densidad
k; (W/m-K) ¢; (J/kg-K) ¢ (J/kg) p (kg/m?)

1=1 0,2 2200 200000 800

1=2 0,4 2200 200000 800

Tabla 1: Coeficientes térmicos de la parafina en la fases s6lida¢ = 1 y liquida¢ = 2.

Difusividad térmica fase 1 | Difusividad térmica fase 2 | Ste; | Ste,
a3 (m?%/s) a3 (m?%/s) —~ —~
1,13 x 10" \ 2,27 x 1077 12,75 ] 3,3 |

Tabla 2: Parametros deducidos de la Tabla 1.

Caso | d; dy | ho Hip. (27) ho Aj
- | - | (kg /Ks?) | (kg/Ks>?) -
1 0,11]0,05 237,224 240,224 | 0,0921568
2 1,51 0,05 677,723 680,723 | 0,1943095
3 0,1 2 237,224 240,224 | 0,1306197
4 1,5 2 677,723 680,723 | 0,2475820

Tabla 3: Valores de los coeficientes \; que caracterizan a las fronteras libre x = s,;(t) para los casos j = 1,2, 3, 4.

a? = % (2 = 1,2) y de los niimeros de Stefan Ste, y Ste, definidos en el Teorema 2, se derivan
los parc%metros listados en la Tabla 2.

Teniendo en cuenta los coeficientes térmicos obtenidos en la Tabla 1 y los pardmetros de-
ducidos en la Tabla 2, en la Tabla 3 se obtiene la tinica solucion de la ecuacion (30) que
caracteriza a la frontera libre del problema (2)-(9) para cuatro casos diferentes (7 = 1,2,3,4)

de las constantes positivas dy y ds.

Observacion 2 Se puede estudiar el comportamiento asinténico cuando hy — oo, obtenien-
do que la solucion del problema (2)-(9) converge a la solucion del problema (2)-(5), (7)-(9)
imponiendo la condicion de temperatura ®5(0,t) = By, cont > 0 en el borde fijo x = 0.

4. CONCLUSIONES

Este trabajo ha propuesto un modelo unidimensional para describir el proceso de fusién de
un material en un dominio semi-infinito, bajo una condicién convectiva en la frontera fija y la
influencia de una fuente de calor interna de tipo exponencial. Se ha demostrado la existencia y
unicidad de solucién de tipo similaridad bajo ciertas condiciones sobre los datos del problema.
Ademais, se present6 un ejemplo computacional que ilustra la aplicabilidad del modelo al pro-
ceso de fusion de la parafina, validando su utilidad en contextos reales y proporcionando una
herramienta eficaz para simular estos fenémenos.

En general, los resultados obtenidos no solo aportan al estudio teérico de los problemas de
cambio de fase, sino que también abren la puerta a futuras aplicaciones préicticas en la ingenieria
y la fisica, particularmente en procesos que involucren materiales con caracteristicas térmicas
complejas y condiciones de contorno variables.
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