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Resumen. Se considera un problema unidimensional de Stefan multifase que modela los cambios de
fase de un material semi-infinito, bajo una condicién convectiva o de tipo Robin en el borde fijo. Se
establecen condiciones suficientes sobre el pardmetro que caracteriza la transferencia de calor en este
borde para garantizar la existencia y unicidad de solucién de tipo similaridad. En el caso en que dicho
pardmetro tiende a infinito, la solucién de este problema converge a la del caso con condicién de tipo
Dirichlet en el borde fijo.

Keywords: n-phase Stefan problem, Convective boundary condition, Similarity-type solution, Asym-
ptotic behaviour.

Abstract. A one-dimensional multiphase Stefan problem is considered, modeling the phase-change of a
semi-infinite material under a convective or a Robin-type boundary condition at the fixed face. Sufficient
conditions are established on the parameter characterizing the heat transfer at this boundary to guarantee
the existence and uniqueness of a similarity-type solution. In the case where this parameter goes to infi-
nity, the solution of this problem converges to that of the case with a Dirichlet-type condition at the fixed
face.

Copyright © 2025 Asociacion Argentina de Mecanica Computacional
ISSN: 2591-3522 DOI: 10.70567/mc.v42.0csid8424


https://creativecommons.org/licenses/by/4.0
http://www.amcaonline.org.ar
https://doi.org/10.70567/mc.v42.ocsid8424

1500 J. BOLLATI, M.F. NATALE, J.A. SEMITIEL, D.A. TARZIA

1. INTRODUCCION

Los problemas de Stefan son un area de estudio relevante debido a su aparicion en diversos
contextos importantes de la fisica, la ingenieria y la industria. Son esenciales para comprender
los fendmenos de transicion de fase, especialmente en situaciones que involucran transferencia
de calor y procesos de solidificacion o fusion. El objetivo de los problemas de Stefan es describir
las fases de un material que experimenta un cambio de fase y determinar la ubicacién de la o
las interfaces que separan a dichas regiones, conocidas como fronteras libres.

Algunas de las aplicaciones de los problemas de tipo Stefan incluyen la solidificaciéon de
aleaciones binarias como por ejemplo en Brosa Planella et al. (2021); Rubinstein (1971); So-
lomon et al. (1982); Venturato et al. (2024), la colada continua del acero en Belhamadia et al.
(2023) y la criopreservacion de células en Dalwadi et al. (2020). Existen numerosas aplicacio-
nes de procesos de cambio de fase que pueden consultarse en libros como Alexiades y Solomon
(1993); Crank (1984); Gupta (2018); Koga y Krstic (2020); Lunardini (1991); Perez (2020);
Szekely y Themelis (1971); Visintin (1996).

En los problemas de Stefan, que modelan procesos de cambio de fase como la fusidn, las
condiciones de contorno juegan un papel fundamental en la determinacion de la evolucién de la
temperatura y de la frontera libre. Una condicion particularmente importante desde el punto de
vista fisico es la condicion convectiva, también conocida como condicion de tipo Robin. Esta
condicidn describe situaciones en las que el flujo de calor en el borde fijo es proporcional a la
diferencia entre la temperatura del material en el borde fijo y la temperatura del entorno:

K20, = (1) (000.1) — ).

donde 0 = 0(x,t) es la temperatura del material, k es la conductividad térmica, H (t) caracteriza
la transferencia de calor en el borde fijo y 6., > 0 representa la temperatura ambiente. En este
trabajo se considera el proceso de fusién de un material semi-infinito cuando se impone una
condicién convectiva en el borde fijo x = 0 de la forma H(t) = %, con hy > 0. En contraste
con las condiciones de tipo Dirichlet (temperatura prescrita) o Neumann (flujo prescrito), la
condicién convectiva proporciona un modelo mds realista en numerosos contextos fisicos e
ingenieriles, como en la solidificacién de metales o el enfriamiento de materiales sometidos a
un ambiente con conveccion forzada.

Un problema de Stefan a n fases es una generalizacién del cldsico problema de Stefan a dos
fases. En lugar de considerar solo dos fases (s6lido y liquido), el problema a n fases considera
multiples transiciones de fase sucesivas, tipicamente en medios con varias fases térmicas o
materiales con distintos puntos de cambio de fase como puede verse en Wilson (1978), Sanziel
y Tarzia (1989) y en Panov (2025).

Este trabajo estd organizado de la siguiente manera. En la Seccién 2 se formula un problema
de Stefan unidimensional a n fases para la fusién de un material homogéneo semi-infinito x > 0,
donde se impone una condicion convectiva o de tipo Robin en el borde fijo = 0. Inicialmente,
en el tiempo ¢ = 0, el material se encuentra en estado s6lido como se observa en la Figura 1. A
partir de un instante ¢ > 0, la distribucién de la temperatura en cada regién es como se muestra
en la Figura 2 donde x = s;(t) con i = 1,2,....,n — 1 son las fronteras libres que separan las
n regiones. En la Seccién 3 se demuestra la existencia y unicidad de la solucién bajo ciertas
hipétesis sobre los datos del problema. Finalmente, en la Seccion 4 se exponen las conclusiones
principales del trabajo.
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Figura 1: Perfil de temperatura en la region sélida.
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Figura 2: Distribucidn espacial por regiones: liquida, intermedias y s6lida.
2. PLANTEAMIENTO DEL PROBLEMA
El propésito es determinar la distribucion de la temperatura:
(0, (1) si osp(t) =0<z<s,-4(t), t>0,
Op1(z,t)  si s,1(t) <@ < sp-9(t), t >0,
O(x,t) = :
Os(x,t) si oso(t) <z < s1(1), t>0,
01(x,t) si si(t) <x < so(t) =400, t>0,

1501

)

y las fronteras libres x = s;(t), t > 0 que separan la fase i de lafase i+ 1coni =1,2,...,n—1.
Una descripcion matemdtica del modelo esté representada por:

00,

E(ﬂf,t) =

020,

aiw<x7t)v

si(t) <z < si-q(t), t >0,

2)

donde «; = % > 0 representa el coeficiente de difusion térmica siendo c; y k; el calor espe-
cifico y la conductividad térmica, respectivamente en la fase . con: = 1,2,....ny p > Oes la
densidad de masa comtin a las n fases. Ademds, se consideran sy(t) = 400y s,(t) = 0 para

todot > 0.

La temperatura inicial (¢ = 0) y la temperatura cuando x — +00, se asumen constantes:

0y (z,0) = 0y,
61(+OO, t) = 517

x>0,
t> 0.

En el borde fijo x = 0 se impone una condicién convectiva o de tipo Robin:

00 ho

Ky,

2 (0,1) = 7 <9n(0,t) _ §oo> :

t>0,

3)
4)

®)

donde hg > 0 es el coeficiente que caracteriza la tranferencia de calor en el borde fijo z = 0y
0 es la temperatura ambiente.
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Las condiciones de cambio de fase sobre las fronteras libres © = s;(t) se obtienen mediante
un balance energético (condiciones de Stefan):

80z 891’4—1

donde §; > 0 representa el calor latente por unidad de volumen necesario para pasar de la fase
1 ala fase 7 + 1y las condiciones de temperatura en las fronteras libres se asumen constantes:

ki

0;(s:(t), 1) = O 1 (si01(t),8) = Oipr, >0, 7
coni = 1,...,n — 1y verifican la relacién:
§1<§2<..<§n<500. (8)
Ademds, las posiciones iniciales de las fronteras libres son
5i(0)=0, i=1,2,...n—1. 9)

La Figura 3 es una representacion esquemadtica del problema de Stefan a n fases a resolver.

t z = 8,-1(t) z = s3(t) z = so(t) z = s1(t)

FASE LiQUIDA
T="n

90,

en(07 t) - 500

(

ho
Vi

00,
kn%(ov t)

01(x,0) = 6, €+

Figura 3: Problema de Stefan a n fases con condicién convectiva en el borde fijo

3. EXISTENCIA Y UNICIDAD DE SOLUCION

En esta seccion se prueba la existencia y unicidad de solucién de tipo similaridad del pro-
blema de Stefan multifase (2)-(9) bajo ciertas hipdtesis sobre los datos iniciales. Siguiendo las
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ideas de Sanziel y Tarzia (1989) y Wilson (1978), se propone una solucion de similaridad de la
forma:

0,(z,t) = A; + Bjert (gaj ﬁ) , sit) <z < sia(t), t >0, (10)

si(t) = 2wVt t>0, (11)
donde a; = /o;. Las constantes A; y B; deben determinarse para cadai = 1,2, ..., n, como tam-

bién los pardametros w; > 0 que caracterizan las fronteras libres z = s;(¢) coni = 1,2,...,n— 1.
De las condiciones (3)-(7), se obtiene:

0;1 erf <w;:1> — 0 ext <%> 0; — 0,1

) B’L = ) (12)
erf (422 ) — exf () erf (42 ) — exf ()
coni=1,2,...n—1,y

A=

6, + aoo"f"ﬁerf (“’;*) i_q
An = o ho v o , Bn = . n oow - 7 (13)
1+ T erf < - ) P v + erf <a—n)

donde se introduce un parametro ficticio wy = +00.
La condicién (7), parai = 1,2, ...,n—1, se satisface si y solo si (w1, ws, ..., w,_1) s solucién
del sistema de (n — 1) ecuaciones con (n — 1) incégnitas z1, 29,..., Z,_1:

—6%+5+1¢g22—% Sizi, i=1,2,omn—2, (14)
LT e R ’(ai)—l) " e 1

anho v on

donde

g = i @;H—é;) >0, i=1,2...n—1, (16)
B = oz (0 —0,) >0, (17)
n(z,a) = exp (—Z—i) , 2>0,a>0, (18)
o(z,w,y) = erf <§> — erf (%) , 2>0, w>0,y>0. (19)

Para demostrar la existencia de solucién del sistema (14)-(15), se definen las funciones:
Gi(z) = =z, 2z>0, (20)
h(z) = 6iz+ /21l 250 1)

. 1A P\~ ) 2
Teniendo en cuenta que la funcion Fi(z) = e’;ff(c(zz))

creciente, se sigue que la funcién h; verifica:

, 2z > 0 es una funcidn estrictamente

hi(0) = B, >0, hy(+00) = 400, H(z)>0, Yz >0,
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entonces la ecuacion (14) para: = 1 es

n(zlv a2>
h = 1227 22
1(21) 62(;5(21,227@2) ( )
y por lo tanto ¢(z1, 22, a2) > 0y 21 > 2.
Sea ahora la funcién definida por
(z as)
Hl()—erf< ) e 220 (23)

Por las propiedades de la funcién A, resulta que H; satisface:

H,(0) = D <0, Hy(+o0)=1, Hi(z)>0, Vz>0.

A

Luego, se deduce que existe & > 0 tal que H;(£;) = 0y por lo tanto es posible definir la
funcién:
Go(2) = ag exf 1 (Hy(2)), 2z € (&,+00) (24)

la cual es una funcién estrictamente creciente y verifica Go(&1) = 0y Ga(+00) = +00.
La igualdad (22) puede reescribirse como

B o hl(Zl)

= ; (25)
¢(217 <25 @2) 77(21, az)
y teniendo en cuenta la funcion dada en (24), se obtiene
Z9 = GQ(Zl). (26)

Dado que G(z) < G1(z) paratodo z € (&, +00), siguiendo las ideas de Wilson (1978) y
Sanziel y Tarzia (1989), y procediendo inductivamente, se definen las siguientes funciones:

hi(2) = 0:Gi(2) + i B e 2 € (61, 00), i =2,.,m =2, @7)
- (2) :5n,1Gn,1<z> + B (2) B Y, 2 € (§aai+00), (28)
Hi(z) = ef (S — g 205 ) 2 € (§1,400), i =2,n =2, (29)
Gi(2) = a; exf ™' (Hi_1(2)), z€ (§-1,+0), i1 =3,..,n—1, (30)

donde
§i>&i1 ) Hi(6)=0, i=2,..,n (31)

Teniendo en cuenta que
Bi __ hia()
o(Gi1(2),Gi(2),ai)  n(Gii(2),a;)’

resulta que G;_;(z) > G;(z) para todo z € (&_1,+00) y por lo tanto las funciones definidas
por (27)-(30) son estrictamente crecientes y satisfacen las siguientes condiciones:

i=3,..,n—1, (32)

hi(gifl) > 07 ( )
H;(&-1) <0, H;(&) =0, H;(4+00) = 1,
Gi(&i-1) =0, Gi(+00) =
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Por otro lado, la funcion definida por

1(Gn1(2), an)

Kho (Z) = 6n zZ € (571—27 +OO) ) (33)

verifica las siguientes propiedades:

Kho(gn—Q) - ﬁnh%ﬁ > 07 Kh0(+00) = 07 Ki/z()('z) < 07 Vz > gn—Q-

Luego, de (28), (30) y (33), el sistema (14)-(15), puede reescribirse como:

Zi:Gi(Zl), i:2,...,n—1, (34)
hn-1(21) = Kp,(21). (35)

Asi, la ecuacién (35) tiene una tnica solucién z; = wq si Kpy(§,-2) > hy—1(§,—2) y por lo
tanto, el sistema (14)-(15) tiene una tnica solucién z; = w; cont = 1,2,...,n — 1 si

k’%an_l 900 - 971 1
ho > 2 = ~ :
ankn_lﬁ en — 977,71 Hn—3<€n—2)

Observacion 1 Se puede estudiar el comportamiento asintotico si el coeficiente hg, que carac-
teriza el flujo de calor en el borde fijo x = 0, tiende a infinito, obteniéndose que la solucion del
problema de Stefan a n fases con condicion de tipo Robin en x = 0 dado por (2)—(9) converge
a la tinica solucion del problema de Stefan a n fases definido por (2)-(4) y (6)-(9), imponiendo
una condicién de tipo Dirichlet en el borde fijo, 0,,(0,t) = 0, cont > 0.

(36)

4. CONCLUSIONES

Se ha considerado un problema unidimensional de Stefan multifase que describe el cambio
de fase de un material semi-infinito, bajo una condicién de contorno convectiva en el borde fijo.
Se han establecido condiciones suficientes sobre el pardmetro de transferencia de calor en dicha
frontera que garantizan la existencia de una tnica solucidn de tipo similaridad. Ademas, se ha
demostrado que, cuando este pardmetro tiende a infinito, la solucién del problema con condicién
convectiva converge a la solucion del problema asociado con condicion de temperatura prescrita
en el borde fijo.
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