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Resumen. Se considera un problema unidimensional de Stefan multifase que modela los cambios de

fase de un material semi-infinito, bajo una condición convectiva o de tipo Robin en el borde fijo. Se

establecen condiciones suficientes sobre el parámetro que caracteriza la transferencia de calor en este

borde para garantizar la existencia y unicidad de solución de tipo similaridad. En el caso en que dicho

parámetro tiende a infinito, la solución de este problema converge a la del caso con condición de tipo

Dirichlet en el borde fijo.

Keywords: n-phase Stefan problem, Convective boundary condition, Similarity-type solution, Asym-
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Abstract. A one-dimensional multiphase Stefan problem is considered, modeling the phase-change of a

semi-infinite material under a convective or a Robin-type boundary condition at the fixed face. Sufficient

conditions are established on the parameter characterizing the heat transfer at this boundary to guarantee

the existence and uniqueness of a similarity-type solution. In the case where this parameter goes to infi-

nity, the solution of this problem converges to that of the case with a Dirichlet-type condition at the fixed

face.
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1. INTRODUCCIÓN

Los problemas de Stefan son un área de estudio relevante debido a su aparición en diversos

contextos importantes de la física, la ingeniería y la industria. Son esenciales para comprender

los fenómenos de transición de fase, especialmente en situaciones que involucran transferencia

de calor y procesos de solidificación o fusión. El objetivo de los problemas de Stefan es describir

las fases de un material que experimenta un cambio de fase y determinar la ubicación de la o

las interfaces que separan a dichas regiones, conocidas como fronteras libres.

Algunas de las aplicaciones de los problemas de tipo Stefan incluyen la solidificación de

aleaciones binarias como por ejemplo en Brosa Planella et al. (2021); Rubinstein (1971); So-

lomon et al. (1982); Venturato et al. (2024), la colada continua del acero en Belhamadia et al.

(2023) y la criopreservación de células en Dalwadi et al. (2020). Existen numerosas aplicacio-

nes de procesos de cambio de fase que pueden consultarse en libros como Alexiades y Solomon

(1993); Crank (1984); Gupta (2018); Koga y Krstic (2020); Lunardini (1991); Perez (2020);

Szekely y Themelis (1971); Visintin (1996).

En los problemas de Stefan, que modelan procesos de cambio de fase como la fusión, las

condiciones de contorno juegan un papel fundamental en la determinación de la evolución de la

temperatura y de la frontera libre. Una condición particularmente importante desde el punto de

vista físico es la condición convectiva, también conocida como condición de tipo Robin. Esta

condición describe situaciones en las que el flujo de calor en el borde fijo es proporcional a la

diferencia entre la temperatura del material en el borde fijo y la temperatura del entorno:

k
∂θ

∂x
(0, t) = H(t) (θ(0, t)− θ∞) ,

donde θ = θ(x, t) es la temperatura del material, k es la conductividad térmica, H(t) caracteriza

la transferencia de calor en el borde fijo y θ∞ > 0 representa la temperatura ambiente. En este

trabajo se considera el proceso de fusión de un material semi-infinito cuando se impone una

condición convectiva en el borde fijo x = 0 de la forma H(t) = h0√
t
, con h0 > 0. En contraste

con las condiciones de tipo Dirichlet (temperatura prescrita) o Neumann (flujo prescrito), la

condición convectiva proporciona un modelo más realista en numerosos contextos físicos e

ingenieriles, como en la solidificación de metales o el enfriamiento de materiales sometidos a

un ambiente con convección forzada.

Un problema de Stefan a n fases es una generalización del clásico problema de Stefan a dos

fases. En lugar de considerar solo dos fases (sólido y líquido), el problema a n fases considera

múltiples transiciones de fase sucesivas, típicamente en medios con varias fases térmicas o

materiales con distintos puntos de cambio de fase como puede verse en Wilson (1978), Sanziel

y Tarzia (1989) y en Panov (2025).

Este trabajo está organizado de la siguiente manera. En la Sección 2 se formula un problema

de Stefan unidimensional a n fases para la fusión de un material homogéneo semi-infinito x ≥ 0,

donde se impone una condición convectiva o de tipo Robin en el borde fijo x = 0. Inicialmente,

en el tiempo t = 0, el material se encuentra en estado sólido como se observa en la Figura 1. A

partir de un instante t > 0, la distribución de la temperatura en cada región es como se muestra

en la Figura 2 donde x = si(t) con i = 1, 2, ..., n − 1 son las fronteras libres que separan las

n regiones. En la Sección 3 se demuestra la existencia y unicidad de la solución bajo ciertas

hipótesis sobre los datos del problema. Finalmente, en la Sección 4 se exponen las conclusiones

principales del trabajo.
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Figura 1: Perfil de temperatura en la región sólida.
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x = 0 x = sn−1 x = sn−2 · · · x = s2 x = s1

Región líquida i = n Región sólida i = 1

Regiones intermedias

θn(x, t) θ1(x, t)

i = n−1

θn−1(x, t)

i = n−2

θn−2(x, t)

· · · i = 3

θ3(x, t)

i = 2

θ2(x, t)

Figura 2: Distribución espacial por regiones: líquida, intermedias y sólida.

2. PLANTEAMIENTO DEL PROBLEMA

El propósito es determinar la distribución de la temperatura:

θ(x, t) =





θn(x, t) si sn(t) = 0 < x < sn−1(t), t > 0,
θn−1(x, t) si sn−1(t) < x < sn−2(t), t > 0,

...

θ2(x, t) si s2(t) < x < s1(t), t > 0,
θ1(x, t) si s1(t) < x < s0(t) = +∞, t > 0,

(1)

y las fronteras libres x = si(t), t > 0 que separan la fase i de la fase i+1 con i = 1, 2, ..., n−1.

Una descripción matemática del modelo está representada por:

∂θi
∂t

(x, t) = αi

∂2θi
∂x2

(x, t), si(t) < x < si−1(t), t > 0, (2)

donde αi =
ki
ρci

> 0 representa el coeficiente de difusión térmica siendo ci y ki el calor espe-

cífico y la conductividad térmica, respectivamente en la fase i con i = 1, 2, ..., n y ρ > 0 es la

densidad de masa común a las n fases. Además, se consideran s0(t) ≡ +∞ y sn(t) ≡ 0 para

todo t > 0.

La temperatura inicial (t = 0) y la temperatura cuando x → +∞, se asumen constantes:

θ1(x, 0) = θ̃1, x > 0, (3)

θ1(+∞, t) = θ̃1, t > 0. (4)

En el borde fijo x = 0 se impone una condición convectiva o de tipo Robin:

kn
∂θn
∂x

(0, t) =
h0√
t

(
θn(0, t)− θ̃∞

)
, t > 0, (5)

donde h0 > 0 es el coeficiente que caracteriza la tranferencia de calor en el borde fijo x = 0 y

θ̃∞ es la temperatura ambiente.
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Las condiciones de cambio de fase sobre las fronteras libres x = si(t) se obtienen mediante

un balance energético (condiciones de Stefan):

ki
∂θi
∂x

(si(t), t)− ki+1
∂θi+1

∂x
(si(t), t) = δiṡi(t), t > 0, (6)

donde δi > 0 representa el calor latente por unidad de volumen necesario para pasar de la fase

i a la fase i+ 1 y las condiciones de temperatura en las fronteras libres se asumen constantes:

θi(si(t), t) = θi+1(si+1(t), t) = θ̃i+1, t > 0, (7)

con i = 1, ..., n− 1 y verifican la relación:

θ̃1 < θ̃2 < .. < θ̃n < θ̃∞. (8)

Además, las posiciones iniciales de las fronteras libres son

si(0) = 0, i = 1, 2, ..., n− 1. (9)

La Figura 3 es una representación esquemática del problema de Stefan a n fases a resolver.

Figura 3: Problema de Stefan a n fases con condición convectiva en el borde fijo

3. EXISTENCIA Y UNICIDAD DE SOLUCIÓN

En esta sección se prueba la existencia y unicidad de solución de tipo similaridad del pro-

blema de Stefan multifase (2)-(9) bajo ciertas hipótesis sobre los datos iniciales. Siguiendo las
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ideas de Sanziel y Tarzia (1989) y Wilson (1978), se propone una solución de similaridad de la

forma:

θi(x, t) = Ai +Bierf
(

x

2ai
√
t

)
, si(t) < x < si−1(t), t > 0, (10)

si(t) = 2ωi

√
t, t > 0, (11)

donde ai =
√
αi. Las constantes Ai y Bi deben determinarse para cada i = 1, 2, ..., n, como tam-

bién los parámetros ωi > 0 que caracterizan las fronteras libres x = si(t) con i = 1, 2, ..., n−1.

De las condiciones (3)-(7), se obtiene:

Ai =
θ̃i+1 erf

(
ωi−1

ai

)
− θ̃i erf

(
ωi

ai

)

erf
(

ωi−1

ai

)
− erf

(
ωi

ai

) , Bi =
θ̃i − θ̃i+1

erf
(

ωi−1

ai

)
− erf

(
ωi

ai

) , (12)

con i = 1, 2, ..., n− 1, y

An =
θ̃n +

θ̃∞h0an
√
π

kn
erf

(
ωn−1

an

)

1 + anh0

√
π

kn
erf

(
ωn−1

an

) , Bn =
θ̃n − θ̃∞

kn
anh0

√
π
+ erf

(
ωn−1

an

) , (13)

donde se introduce un parámetro ficticio ω0 = +∞.

La condición (7), para i = 1, 2, ..., n−1, se satisface si y solo si (ω1, ω2, ..., ωn−1) es solución

del sistema de (n− 1) ecuaciones con (n− 1) incógnitas z1, z2,..., zn−1:

−βi

η(zi, ai)

φ(zi−1, zi, ai)
+ βi+1

η(zi, ai+1)

φ(zi, zi+1, ai)
= δizi, i = 1, 2, ..., n− 2, (14)

−βn−1
η(zn−1, an−1)

φ(zn−2, zn−1, an−1)
+

βn η(zn−1, an)

kn
anh0

√
π
+ erf

(
zn−1

an

) = δn−1zn−1, (15)

donde

βi = ki
ai
√
π

(
θ̃i+1 − θ̃i

)
> 0, i = 1, 2, ..., n− 1, (16)

βn = kn
an

√
π

(
θ̃∞ − θ̃n

)
> 0, (17)

η(z, a) = exp
(
− z2

a2

)
, z > 0, a > 0, (18)

φ(z, w, y) = erf
(

z
y

)
− erf

(
w
y

)
, z > 0, w > 0, y > 0. (19)

Para demostrar la existencia de solución del sistema (14)-(15), se definen las funciones:

G1(z) = z, z > 0, (20)

h1(z) = δ1z + β1
η(z,a1)

erfc
(

z
a1

) , z > 0. (21)

Teniendo en cuenta que la función F1(z) = exp(−z2)
erfc(z)

, z > 0 es una función estrictamente

creciente, se sigue que la función h1 verifica:

h1(0) = β1 > 0, h1(+∞) = +∞, h′
1(z) > 0, ∀z > 0,
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entonces la ecuación (14) para i = 1 es

h1(z1) = β2
η(z1, a2)

φ(z1, z2, a2)
(22)

y por lo tanto φ(z1, z2, a2) > 0 y z1 > z2.
Sea ahora la función definida por

H1(z) = erf
(

z
a2

)
− β2

η(z, a2)

h1(z)
, z > 0. (23)

Por las propiedades de la función h1, resulta que H1 satisface:

H1(0) = −β2

β1

< 0, H1(+∞) = 1, H ′
1(z) > 0, ∀z > 0.

Luego, se deduce que existe ξ1 > 0 tal que H1(ξ1) = 0 y por lo tanto es posible definir la

función:

G2(z) = a2 erf
−1 (H1(z)) , z ∈ (ξ1,+∞) (24)

la cual es una función estrictamente creciente y verifica G2(ξ1) = 0 y G2(+∞) = +∞.

La igualdad (22) puede reescribirse como

β2

φ(z1, z2, a2)
=

h1(z1)

η(z1, a2)
, (25)

y teniendo en cuenta la función dada en (24), se obtiene

z2 = G2(z1). (26)

Dado que G2(z) < G1(z) para todo z ∈ (ξ1,+∞), siguiendo las ideas de Wilson (1978) y

Sanziel y Tarzia (1989), y procediendo inductivamente, se definen las siguientes funciones:

hi(z) = δiGi(z) + βi
η(Gi(z),ai)

φ(Gi−1(z),Gi(z),ai)
, z ∈ (ξi−1,+∞) , i = 2, .., n− 2, (27)

hn−1(z) = δn−1Gn−1(z) + hn−2(z)
η(Gn−1(z),an−1)
η(Gn−2(z),an−1)

, z ∈ (ξn−2,+∞) , (28)

Hi(z) = erf
(

Gi(z)
ai+1

)
− βi

η(Gi(z),ai+1)
hi(z)

, z ∈ (ξi−1,+∞) , i = 2, ..., n− 2, (29)

Gi(z) = ai erf
−1 (Hi−1(z)) , z ∈ (ξi−1,+∞) , i = 3, ..., n− 1, (30)

donde

ξi > ξi−1 / Hi(ξi) = 0, i = 2, ..., n. (31)

Teniendo en cuenta que

βi

φ(Gi−1(z), Gi(z), ai)
=

hi−1(z)

η(Gi−1(z), ai)
, i = 3, ..., n− 1, (32)

resulta que Gi−1(z) > Gi(z) para todo z ∈ (ξi−1,+∞) y por lo tanto las funciones definidas

por (27)-(30) son estrictamente crecientes y satisfacen las siguientes condiciones:

hi(ξi−1) > 0, hi(+∞) = +∞,

Hi(ξi−1) < 0, Hi(ξi) = 0, Hi(+∞) = 1,

Gi(ξi−1) = 0, Gi(+∞) = +∞.
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Por otro lado, la función definida por

Kh0
(z) = βn

η(Gn−1(z), an)

kn
anh0

√
π
+ erf

(
Gn−1(z)

an

) , z ∈ (ξn−2,+∞) , (33)

verifica las siguientes propiedades:

Kh0
(ξn−2) =

βnh0an
√
π

kn
> 0, Kh0

(+∞) = 0, K ′
h0
(z) < 0, ∀z > ξn−2.

Luego, de (28), (30) y (33), el sistema (14)-(15), puede reescribirse como:

zi = Gi(z1), i = 2, ..., n− 1, (34)

hn−1(z1) = Kh0
(z1). (35)

Así, la ecuación (35) tiene una única solución z1 = ω1 si Kh0
(ξn−2) > hn−1(ξn−2) y por lo

tanto, el sistema (14)-(15) tiene una única solución zi = ωi con i = 1, 2, ..., n− 1 si

h0 >
k2
nan−1

a2nkn−1

√
π

θ̃∞ − θ̃n

θ̃n − θ̃n−1

1

Hn−3(ξn−2)
. (36)

Observación 1 Se puede estudiar el comportamiento asintótico si el coeficiente h0, que carac-

teriza el flujo de calor en el borde fijo x = 0, tiende a infinito, obteniéndose que la solución del

problema de Stefan a n fases con condición de tipo Robin en x = 0 dado por (2)–(9) converge

a la única solución del problema de Stefan a n fases definido por (2)-(4) y (6)-(9), imponiendo

una condición de tipo Dirichlet en el borde fijo, θn(0, t) = θ̃∞ con t > 0.

4. CONCLUSIONES

Se ha considerado un problema unidimensional de Stefan multifase que describe el cambio

de fase de un material semi-infinito, bajo una condición de contorno convectiva en el borde fijo.

Se han establecido condiciones suficientes sobre el parámetro de transferencia de calor en dicha

frontera que garantizan la existencia de una única solución de tipo similaridad. Además, se ha

demostrado que, cuando este parámetro tiende a infinito, la solución del problema con condición

convectiva converge a la solución del problema asociado con condición de temperatura prescrita

en el borde fijo.
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