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Resumen. En este trabajo se estudia una técnica para la estimación del término fuente en una ecuación

bidimensional de reacción-advección-difusión-fuente. La identificación de este término constituye un

problema inverso mal planteado en el sentido de Hadamard, dado que el operador inverso no es acota-

do, lo que provoca una alta sensibilidad frente a perturbaciones en los datos. Se propone una estrategia

de regularización basada en la Descomposición Modal Empírica Bidimensional (BEMD) para atenuar la

variabilidad no deseada, inducida por el ruido presente en las mediciones experimentales o simuladas. Se

presenta un ejemplo numérico que ilustra la efectividad de la metodología propuesta, y se comparan los

resultados obtenidos con los reportados en la literatura, en los que se emplean otras técnicas de regulari-

zación clásicas. Además, se realiza un análisis sobre las distribuciones y las propiedades estadísticas de

los errores relativos de aproximación, a fin de evaluar la robustez y estabilidad del enfoque desarrollado.

Keywords: BEMD, Heat transfer, Source estimation, Regularization.

Abstract. In this work, a technique is studied for estimating the source term in a two-dimensional reac-

tion–advection–diffusion–source equation. The identification of this term constitutes an ill-posed inverse

problem in the sense of Hadamard, since the associated inverse operator is unbounded, which leads to

high sensitivity to perturbations in the data. To address this difficulty, a regularization strategy based on

the Bidimensional Empirical Mode Decomposition (BEMD) is proposed, aimed at mitigating the un-

desired variability induced by noise present in experimental or simulated measurements. A numerical

example is presented to illustrate the effectiveness of the proposed methodology, and the obtained re-

sults are compared with those reported in the literature, where other classical regularization techniques

are employed. In addition, a detailed analysis is carried out on the error distributions and the statisti-

cal properties of the approximation relative errors, in order to assess the robustness and stability of the

developed approach.
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1. INTRODUCCIÓN

El problema de estimación de fuentes en sistemas de transporte modelados por ecuaciones

diferenciales parabólicas constituye un problema inverso mal planteado, dado que la solución

no depende de manera continua de los datos. En (Umbricht, 2021; Umbricht y Rubio, 2024),

los autores estudian el caso particular de la estimación de un término fuente en una ecuación

parabólica lineal n-dimensional, utilizando datos de entrada que dependen del espacio. Allí se

aborda la identificación de un término fuente independiente del tiempo en una ecuación evo-

lutiva parabólica lineal, a partir de mediciones dependientes de la variable espacial o datos

ruidosos medidos en un tiempo determinado, elegido de forma arbitraria. En este problema,

pequeñas perturbaciones en los datos, especialmente en sus componentes de alta frecuencia,

pueden generar errores significativos en la solución. En (Umbricht y Rubio, 2024) se propo-

nen tres familias uniparamétricas de operadores de regularización, diseñadas para contrarrestar

la inestabilidad del operador inverso. Las estrategias presentadas allí generalizan metodologías

desarrolladas por otros autores (ver, por ejemplo, (Li et al., 2012; Yang y Fu, 2014)), pero a di-

ferencia de esas, se formulan en el marco de la teoría de operadores, dando lugar a aplicaciones

en contextos y problemas más generales.

En este trabajo se propone un enfoque diferente que consiste en regularizar la fuente estima-

da mediante la Descomposición Modal Empírica Bidimensional (BEMD) (Nunes et al., 2003;

Painam y Manikandan, 2023; Rubio et al., 2024; Morvidone et al., 2024), que generaliza el mé-

todo propuesto en Huang et al. (1998) para series temporales. Esta técnica constituye un análisis

no lineal de una función de dos variables reales, f(x, y), que no requiere una base predefinida:

las componentes, llamadas modos, se obtienen empíricamente a partir de los datos mediante un

algoritmo que se adapta localmente a las características de la función, captando su estructura

en múltiples escalas. Los modos son generados en orden creciente de escala, de modo que las

componentes de alta frecuencia, generalmente asociadas a ruido, quedan concentradas en los

primeros modos. El desafío consiste en determinar cuántos modos deben considerarse atribui-

bles al ruido, de forma tal que la suma de los modos remanentes proporcione una estimación

regularizada de la fuente. Los operadores de regularización mencionados previamente han de-

mostrado ser eficaces para la estimación de fuentes a partir de datos ruidosos, en el marco de

una ecuación diferencial parabólica lineal utilizada para modelar fenómenos de transporte de

calor, masa o información. Los resultados obtenidos mediante BEMD se comparan con los de

aquellos enfoques previos considerando ejemplos con fuentes diferenciables y no diferencia-

bles. Aquí se presentan los resultados para una fuente no diferenciable. Se evalúan los errores

globales y se caracterizan estadísticamente los errores de estimación tanto a nivel global, uti-

lizando normas, como a nivel local, utilizando distribución estadística de errores y entropía de

imágenes. Los errores relativos globales de las diferentes regularizaciones fueron evaluados con

la norma de Frobenius. Esta norma es la generalmente usada para cuantificar errores (Cortino-

vis y Kressner, 2020; González y Suárez, 2013). Se define como la raíz cuadrada de la suma

cuadrática de todos los errores individuales de los elementos de la matriz; equivale a la norma

euclídea de un vector y tiene significado físico dado que los elementos de la matriz se refieren a

errores de medición o determinación. La distribución espacial de los errores se caracteriza con

la entropía de Shannon, siguiendo los resultados de trabajos anteriores donde se determinaron,

en imágenes, la textura global (Sponring, 1996), y local (Liu et al., 2014).

El objetivo de este trabajo es analizar la eficacia del método de regularización que se propone,

basado en BEMD. Para ilustrar el desempeño de la regularización propuesta, y con el fin de

comparar los resultados con los obtenidos con operadores de regularización introducidos en
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Umbricht y Rubio (2024), se considera el ejemplo de una función no-diferenciable analizada en

dicho trabajo, para la cual ya se han calculado los errores de aproximación.

2. FORMULACIÓN MATEMÁTICA

El problema de estimación de la fuente que consideramos consiste en estimar la función f

de la siguiente ecuación bidimensional de difusión-advección-reacción (ADR) con fuente:

∂u

∂t
(x, t) = α2∆u(x, t)− β · ∇(u(x, t))− νu(x, t) + f(x), x ∈ R

2, t > 0, (1)

donde β ∈ R
n, u(·, t), f(·) ∈ L2(Rn), α2, ν ∈ R

+, ∆,∇ denotan el operador laplaciano y el

operador gradiente, respectivamente, y “ · ” representa el producto interno en R
2. Sin pérdida

de generalidad, se considera condición inicial nula, es decir,

u(x, 0) = 0, x ∈ R
2. (2)

El término fuente f con la condición (2), se obtiene a partir de datos ruidosos gδ experimen-

tales o simulados numéricamente en un instante t0 ∈ R
+,

gδ(x) = u(x, t0) + ϵδ, x ∈ R
2, (3)

donde ϵδ representa el ruido de medición. Se supone que los datos, para un nivel de ruido δ,

satisfacen

||g − gδ||L2(R2) ≤ δ, 0 < δ < δM , (4)

siendo δM ∈ R
+ el máximo nivel de ruido tolerado y g(x) = u(x, t0), x ∈ R

2.

En Umbricht y Rubio (2024) los autores encontraron la expresión para el operador inverso,

usando técnicas de Fourier, y demostraron que el problema de estimación de la fuente (1)-(4) es

un problema inverso inestable frente a errores en los datos, lo que lleva a un problema inverso

mal planteado en sentido de Hadamard (Hadamard, 1924). Esto se debe a que el operador inver-

so en el dominio de las frecuencias Λ(ξ), no es acotado y amplifica los errores de medición a

altas frecuencias, lo cual conduce a grandes errores de estimación aún cuando el ruido de medi-

ción sea pequeño (Engl et al., 1996; Kirsch et al., 2011). Para regularizar la fuente estimada, se

proponen diferentes operadores, definidos a partir del operador inverso, que actúan como filtros

pasa-bajo. Entre ellos, se destaca el operador de regularización definido por

Rµ ĝ(ξ) :=
Λ(ξ)

1 + µ2 ∥ξ∥4
ĝ(ξ), (5)

donde 0 < µ < 1 es el parámetro de regularización, ĝ es la transformada de Fourier de los

datos y ξ denota la variable n-dimensional de Fourier en espacio de frecuencia. La fuente a

regularizar y la fuente regularizada con el operador definido en (5) se denotan, respectivamente,

fδ y f2.

En la siguiente sección, el problema de regularización se encara utilizando una técnica basada

en BEMD.
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3. REGULARIZACIÓN UTILIZANDO BEMD

BEMD constituye un análisis no lineal de una función de dos variables reales, que no requiere

una base predefinida: los modos se obtienen a partir de los datos mediante un algoritmo que se

adapta a las características locales de la función, captando su estructura en múltiples escalas

(Nunes et al., 2003). Dichos modos se generan en orden creciente de escala, de manera que

las componentes de alta frecuencia, generalmente atribuidas al ruido, quedan concentradas en

los primeros. El desafío aquí consiste en determinar cuántos de los modos se pueden atribuir

al ruido, de forma tal que la suma de los remanentes proporcione una adecuada estimación

regularizada de la fuente.

En este trabajo se estudian los errores que se obtienen con diferentes regularizaciones basa-

das en BEMD considerando tanto fδ como la fuente exacta f . El objetivo es sentar las bases para

el desarrollo futuro de un algoritmo que permita regularizar fuentes estimadas incluso en ausen-

cia de conocimiento previo sobre la fuente real. Con esta finalidad, se proponen las siguientes

etapas:

Se descompone fδ en modos bidimensionales usando la técnica BEMD.

Se analiza el nivel de ruido presente en cada modo para detectar información relevante.

Se obtienen distintas estimaciones de la fuente según la cantidad de modos que se descar-

tan a partir del primero.

Se realizan análisis local y global de los errores relativos de las distintas estimaciones.

Se propone la mejor estimación.

4. RESULTADOS

Con el fin de analizar la eficacia del método aquí propuesto para obtener una estimación

adecuada de la fuente, se aborda un ejemplo bidimensional donde la fuente es una función no

diferenciable f , representada en la Fig. 1, definida como:

f(x, y) =





10 + x− y, x ∈ [−10, 0], y ∈ [0, 10 + x],

10 + x+ y, x ∈ [−10, 0], y ∈ [−10− x, 0],

10− x− y, x ∈ [0, 10], y ∈ [0, 10− x],

10− x+ y, x ∈ [0, 10], y ∈ [−10 + x, 0],

0, en otro caso.

(6)

Dado que los métodos de regularización tienden a suavizar en exceso las fuentes no di-

ferenciables, resulta pertinente estudiar estas fuentes mediante regularización BEMD, con el

propósito de obtener una mejor aproximación.

Para este trabajo, se utiliza la fuente estimada fδ en Umbricht y Rubio (2024), obtenida en

base a los datos g(x) = u(x, t0) simulados numéricamente a partir de la ecuación RADF (1),

utilizando los siguientes valores para los parámetros de la ecuación: α2 = 1; β = (0, 0); ν = 1;

N = 1001 × 1001 y t0 = 0,4. Los datos ruidosos gδ(x) se generan agregando ruido aleatorio

con distribución normal, considerando el valor δ = 0,01. Posteriormente, se aplica el operador

inverso para obtener la estimación fδ de la fuente (ver Fig. 1), donde se observa la necesidad de

regularizarla, debido a la amplificación de errores.
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Figura 1: Fuente f y fuente fδ obtenida con el operador inverso.

4.1. Descomposición BEMD de fδ

Al aplicar el método BEMD a la fuente fδ que se pretende regularizar, se obtiene la descom-

posición en 4 componentes bidimensionales1. Los modos obtenidos se muestran como imágenes

en la Fig. 2.

Figura 2: Descomposición en modos con BEMD de fδ(x)

Se pueden apreciar las características sobresalientes de los distintos modos a partir de las

imágenes obtenidas. En los primeros modos se puede observar una gran cantidad de puntos

distribuidos de manera aleatoria, que no generan una imagen nítida sino una de aspecto rugoso,

1El número total de modos, del cual el último es la tendencia, queda determinado por el algoritmo BEMD

aplicado. Aquí utilizamos el algoritmo desarrollado por Sasikanth Bidimensional Empirical Mode Decomposition

(BEMD), MATLAB Central File Exchange.
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mientras que en los últimos modos se obtienen imágenes más definidas. Estas imágenes sugie-

ren que, descartando el primero o los dos primeros modos, se podría obtener una fuente más

nítida y suavizada.

Consideramos entonces dos aproximaciones de la fuente: fBEMD234 que se obtiene al elimi-

nar solo el primer modo y sumando los modos 2, 3 y 4, y fBEMD34, que resulta de eliminar los

dos primeros modos, es decir, sumando solo los modos 3 y 4. En la Figura 3 se pueden observar

la fuente f , la fuente regularizada f2 y las aproximaciones obtenidas con BEMD: fBEMD234 y

fBEMD34.

Figura 3: Fuente f y las aproximaciones f2, fBEMD234 y fBEMD34

En la Fig. 1 se vio que fδ es muy irregular. En la Fig. 3, se ve que el grado de regularización

es creciente al considerar las estimaciones fBEMD234, fBEMD34 y f2. En ese sentido, la mejor

la aproximación usando la descomposición BEMD es la fBEMD34. Esto se estudia con más

detalle en la próxima sección, donde se hace un análisis de los errores globales y locales de las

diferentes regularizaciones.
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4.2. Análisis de los errores relativos de las aproximaciones

Se analizan los resultados obtenidos al suavizar la fuente utilizando el método BEMD, que

conduce a las aproximaciones fBEMD234 y fBEMD34. Con el fin de evaluar el desempeño de cada

una de ellas, se caracterizan estadísticamente los errores relativos, tanto a nivel global como a

nivel local. En esta sección, se analiza el error relativo considerando distintos aspectos:

el error relativo acumulado, considerando la norma de Frobenius,

la distribución estadística de los valores de los errores, por medio de histogramas,

la distribución espacial de errores, mediante imágenes bidimensionales con los valores de

error en cada punto del dominio de la fuente,

la entropía de las imágenes de error, donde los valores altos reflejarían un nivel de com-

plejidad introducida por ruido.

err(gδ) err(fδ) err(f2) err(fBEMD234) err(fBEMD34)
∥.∥Fro 3.9 e-2 1.3 e-1 3.8 e-3 3.6 e-2 2.1 e-2

Tabla 1: Norma de los errores relativos de los datos gδ y las aproximaciones fδ , f2 (obtenida con el operador de

regularización definido en (5)), fBEMD234 y fBEMD34.

En la Tabla 1 se puede ver que el error de fδ es un orden de magnitud mayor que el de gδ. Se

observa también que con las regularizaciones BEMD234 y BEMD34 dicho error disminuye en

un orden de magnitud respecto de fδ, siendo más eficaz la segunda. Por otro lado, f2 conduce

a un error aún menor. Sin embargo, el método propuesto en este trabajo tiene la ventaja de no

depender del conocimiento del operador inverso.

La Fig. 4 muestra que los valores de los errores tienen una distribución normal con media 0

en todos los casos, con desvíos que dan cuenta de la calidad de cada aproximación.

En la Fig. 5 se puede observar que los errores relativos fδ y fBEMD234 están distribuidos en

todo el dominio, predominando valores del orden de 10−4. En cuanto a la aproximación f2, los

errores son menores que los de las otras aproximaciones consideradas, en casi todo el dominio,

ubicándose en las aristas de la fuente los errores más altos, lo que se debe al suavizado que

produce el operador de regularización. Los errores de la aproximación fBEMD34 son menores

que los de la aproximación fBEMD234 y se observa que en la zona central, donde se encuentra

el soporte de la fuente exacta f , hay mayor concentración de los valores más bajos de error.

Se observa también que en los puntos correspondientes a las aristas los errores toman valores

mayores debido al suavizado que se obtiene al quitar altas frecuencias.

La Fig. 6 muestra que se obtiene una versión más organizada, con menor entropía, con

fBEMD34, en comparación a la estimación fBEMD234. Esta diferencia es aún más notoria en los

puntos que corresponden al soporte de la fuente, que es el dominio de mayor interés.

5. CONCLUSIONES

En este trabajo se abordó la estimación del término fuente en una ecuación bidimensional

de reacción–advección–difusión–fuente, problema que se enmarca dentro de la clase de proble-

mas inversos mal planteados en el sentido de Hadamard, debido a la no acotación del operador

inverso y a la consiguiente sensibilidad frente a perturbaciones en los datos. Para mitigar estas

dificultades se propuso una estrategia de regularización basada en la Descomposición Empírica
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Figura 4: Histogramas de errores con las distintas aproximaciones.

Figura 5: Distribución espacial de los errores relativos.

en Modos Bidimensional (BEMD), cuyo objetivo es atenuar la variabilidad no deseada intro-

ducida por el ruido en las mediciones experimentales o simuladas. La efectividad del enfoque
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Figura 6: Distribución espacial de la entropía local de los errores relativos para las estimaciones fδ , f2, fBEMD234

y fBEMD34.

se ilustró mediante un ejemplo numérico, cuyos resultados fueron contrastados con los obteni-

dos mediante una técnica de regularización reportada en la literatura. Finalmente, el análisis de

las distribuciones y propiedades estadísticas de los errores relativos de aproximación permitió

evaluar la robustez y estabilidad de la metodología, destacando su potencial como herramienta

de regularización para problemas inversos de este tipo. En este sentido, se continuará profundi-

zando en esta línea de investigación con el propósito de desarrollar una estrategia que permita

regularizar funciones desconocidas, incorporando una estimación a priori del error asociado a

la aproximación regularizada.
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