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Resumen. La desorcién térmica es una tecnologia de remediacion de suelos que emplea calor para se-
parar contaminantes volatiles y semivolatiles presentes en suelos, lodos y sedimentos. Se clasifica como
un proceso de separacion fisica, no destructivo. El procedimiento consiste en calentar el material conta-
minado en un desorbedor térmico, provocando la evaporacién de los contaminantes. Estos vapores son
posteriormente capturados y tratados, mientras que el suelo descontaminado puede reutilizarse, comiin-
mente como material de relleno. Para optimizar este proceso, es fundamental que el modelo térmico
represente con precision los mecanismos de transferencia de calor, permitiendo predecir la distribucién
de temperatura en el suelo y la eficiencia de la vaporizacién de los contaminantes. En este estudio se
analizan las dimensiones caracteristicas del equipo con el fin de estimar el tiempo requerido para el trata-
miento. Se obtienen curvas de disefio que permiten dimensionar adecuadamente las resistencias térmicas
y determinar su disposicidn Optima.

Keywords: Thermal Desorption, Drying of Porous Materials, Thermal Modeling with Finite Elements,
Automatic Mesh Generation, Geometric Optimization.

Abstract. Thermal desorption is a soil remediation technology that uses heat to separate volatile and
semi-volatile contaminants present in soils, sludges, and sediments. It is classified as a physical, non-
destructive separation process. The procedure involves heating the contaminated material in a thermal
desorber, causing the contaminants to evaporate. These vapors are subsequently captured and treated,
while the decontaminated soil can be reused, commonly as backfill material. To optimize this process,
it is essential that the thermal model accurately represents the heat transfer mechanisms, enabling the
prediction of temperature distribution within the soil and the efficiency of contaminant vaporization.
This study analyzes the characteristic dimensions of the equipment in order to estimate the treatment
time. Design curves are obtained to properly size the thermal resistances and determine their optimal
arrangement.
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1. INTRODUCCION

La creciente explotaciéon de recursos no convencionales ha intensificado la generacion de
residuos contaminantes, especialmente en suelos afectados por hidrocarburos y compuestos or-
ganicos persistentes. En este contexto, la desorcién térmica se ha consolidado como una tecno-
logia eficaz para la remediacion ambiental (U.S. Environmental Protection Agency, 2001), al
permitir la separacion fisica de contaminantes mediante la aplicacion controlada de calor. Este
proceso no destructivo posibilita la recuperacion del suelo tratado, que puede reutilizarse como
material de relleno, sin alterar su estructura fisica (Zhang et al., 2019; Vidonish et al., 2016).

La eficiencia del proceso depende criticamente de alcanzar temperaturas adecuadas para
volatilizar los contaminantes. En particular, la eliminacién de carburos y compuestos semivo-
latiles requiere rangos térmicos elevados, tipicamente entre 360 °C y 540 °C, mientras que los
compuestos mas voldtiles pueden ser removidos a temperaturas mas bajas (Public Services and
Procurement Canada, 2025). La correcta distribucion de las resistencias calefactoras y el dise-
flo térmico del equipo son factores clave para garantizar una transferencia de calor eficiente y
homogénea en el medio poroso.

Sin embargo, en este trabajo se considera exclusivamente el proceso de eliminacién de hu-
medad, como etapa preliminar del tratamiento térmico. Esta simplificacion permite optimizar
la geometria y disposicion de las resistencias calefactoras, evaluando su influencia sobre los
tiempos de calentamiento y la eficiencia energética del sistema. La humedad, al ser el primer
componente en evaporarse, condiciona la dindmica térmica inicial y su remocién efectiva es
esencial para preparar el suelo para etapas posteriores de desorcion de hidrocarburos.

2. EQUIPO

El material se calienta mediante resistencias calefactoras. Se ubican extractores para eliminar
la humedad evaporada del material. También se ubican termocuplas para medir la temperatura
del material y de las resistencias. Un sistema de control de lazo cerrado opera las resistencias,
para que su temperatura cumpla un calentamiento establecido. Cuando la termocupla del mate-
rial se ubica en forma centrada con tres resistencias la configuracion se llama triangular, figura
1. También se puede acomodar siguiendo un hexdgono (Xu et al., 2022), en ese caso, se ubica
el sensor equidistantemente de 6 resistencias.

. . . Sensores

Resistencias

Figura 1: Esquema triangular, ubicacién de las resistencias y los sensores de temperatura en el interior del equipo.
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El objetivo de este trabajo es determinar tiempos de secado para distintas configuraciones
geométricas del equipo, por lo tanto, se define en forma genérica la distancia entre las resisten-
cias y los sensores como L, y el didmetro de la resistencias como d, figura 2 (a).

-9 O ©

Figura 2: Geometria caracteristica (a); condiciones de simetria y dominio resultante (b) .

Dado que los equipos son muy grandes se aplican una gran cantidad de resistencias, por lo
que el patrén triangular se repite una cantidad indefinida de veces. Despreciando los efectos
de borde en las paredes del equipo, se pueden utilizar condiciones de simetria para achicar el
dominio del andlisis. En la figura 2 (b) se muestran las rectas de simetria utilizadas con linea de
puntos, y el dominio resultante con sombreado.

3. METODOLOGIA
3.1. Formulacion del modelo matematico

La ecuacién

oT )
(pCP>eff E =V (>\effVT) — PVett TN (1)

describe el balance de energia térmica en un medio poroso heterogéneo durante el proceso de
desorcion térmica. A continuacion se detallan los pardmetros involucrados:

= p: densidad del medio [kg/m3]
» cp: capacidad calorifica a presion constante  [J/(kg-°C)]

A: conductividad térmica  [W/(m-°C)]

~v: calor latente de evaporacion  [J/kg]

m: flujo mdsico de evaporaciéon  [kg/s]

Copyright © 2025 Asociacion Argentina de Mecanica Computacional


http://www.amcaonline.org.ar

1568 F. SANCHEZ SARMIENTO, M.A. CAVALIERE

En la férmula anterior, el subindice eff surge de homogeneizar las propiedades térmicas te-
niendo en cuenta la presencia de suelo, humedad e hidrocarburos. Sin embargo, en este estudio
se tuvo en cuenta el hecho de que la energia requerida exclusivamente por el proceso de desor-
cion es mucho menor que la energia requerida para el calentamiento del suelo, por lo cual el
andlisis del efecto de la distribucion de las resistencias calefactoras sobre el proceso de calenta-
miento se efectia desacoplando los fenémenos de calentamiento y desorcion.

Bajo estas hipétesis, el modelo se focaliza sobre los aspectos difusivos, de forma tal que la
ecuacion 1 resulta:

% = aV?T (2)

siendo « la difusividad térmica la cual se considera dependiente de la temperatura de la siguiente

manera T 10°C
T)= |2 — x 107" m? 3
o) = 12T foosc —10°C /s ©
para tener en cuenta el efecto del proceso de desorcidn sobre las propiedades térmicas del ma-
terial que se esta tratando. En este caso en particular, se ha considerado un aumento lineal de la
difusividad de 2 x10~"m?/s a 3 x 10~ " m? /s cuando la temperatura aumenta de 10°C a 400°C

respectivamente.

3.2. Formulacion numérica

Para la resolucién numérica del modelo térmico se adopta el método de elementos finitos
utilizando una formulacién iso-paramétrica. Dado que las resistencias calefactoras se disponen
en forma vertical cubriendo toda la altura del material a tratar, a los efectos de este analisis es
suficiente con discretizar las dos dimensiones horizontales para lo cual se utilizan elementos
finitos de 4 nodos que se muestran en la figura (3.2) .

Las siguientes son las ecuaciones de las funciones de forma referidas al sistema de referencia
propio de cada elemento:

hl = 1
hy — (1—7’)4(1—1—8)
“4)
(I—=r)(1—y9)
h3— 1
(1471 —s)
hy = 1

Figura 3: Elemento paramétrico lineal de 4 nodos.

La evolucién térmica se calcula integrando numéricamente en el tiempo mediante un método
de segundo orden, implicito e incondicionalmente estable (Crank y Nicolson, 1947) para lo
cual en cada paso de tiempo At se resuelve el siguiente sistema de ecuaciones lineales con las
rutinas de la biblioteca numpy. La difusividad térmica « se actualiza en cada instante utilizando
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la temperatura media de cada elemento. Esta simplificacion evita el costo computacional de
resolver iterativamente la nolinealidad del problema, resultando efectiva dado que se trata de una
nolinealidad suave, definida por la ecuacién 3, y los pasos de tiempo utilizados son pequeios
frente a la duracion del proceso de calentamiento.

ATPH = (5)
siendo
Cg
A= ~ T 0,5K, (6)
C
b= (Ki — 0,5Kg) TP (7)

Las matrices globales C; y K, surgen del ensamble de las siguientes matrices elementales.

C, = /_1 /_1 H(r,s) H(r,s)" det(J(r,s))drds (8)

1 rl
K. = / / VH,,(r,s)a(VH,,(r,s)" det(J(r, s)) drds ©)

donde el arreglo H contiene a las funciones de forma (ecuacion 4). El gradiente espacial de las
mismas se calcula como

VH,,(r,s) =VH,r,s)(J(r s))_1 (10)

a través del gradiente local y el jacobiano de la transformacion entre coordenadas globales y
locales.

or  Or
Ohy Dby
VH,s(r,s) = g,fg aa,,fg (11)
s s
Ohy Oy
L 0s  Os
or dy
)= o0 o (12)
ds s

Las temperaturas de las resistencias, definidas por el sistema de control a lazo cerrado, se
imponen como condiciones de borde esenciales (Dirichlet) en el extremo izquierdo de la malla.
En el resto de los contornos del dominio de cdlculo se aplican condiciones de simetria, tal como
se muestra en la figura 2 b). En los problemas térmicos, la condicion de simetria requiere que el
gradiente térmico normal a dicho contorno sea nulo por lo cual también resulta adiabatico. Por
este motivo, no es necesario imponer condiciones de borde adicionales en esos contornos, ya
que la formulacién débil del problema térmico conduce naturalmente a condiciones adiabéticas.
La corrida se realiza hasta que la temperatura del nodo correspondiente a la termocupla supera
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los 100°C, por lo que el cédigo imprime como resultado el tiempo hasta que se seca el material.
Toda la formulacién numérica fue implementada en lenguaje Python mediante un c6digo
propio desarrollado en la Universidad Austral por el primer autor, denominado ThermAU.v1.

3.3. Malla de elementos finitos

Como se requerian hacer mdltiples corridas para distintos valores de L y d, se realizd un
codigo que genera la malla de elementos finitos de manera sistematica. El cédigo se puede ver
en el anexo.

Se construye la malla para el dominio visto en la figura 2 b. Con una sucesién aritmética
se definen las coordenadas radiales de n puntos desde la superficie de la resistencia hasta la
posicion de la termocupla:

po = d/2 (13)
Pn_1 = Lcos(m/6) (14)
Los pardmetros de la sucesion son;
S = Pn-1— Do (15)
N=n-1 (16)
S
= —a
d=2% 17
N1 (17)
Por lo que la sucesion resulta:
pir1=pitid+a;0<i<n-—2 (18)

La primera fila de nodos tiene el valor de p en la coordenada = y 0 en la coordenada y. Luego,
la segunda fila y la tercera filas son rotaciones 7/12 y 7 /6 desde el centro de la resistencia.
Las coordenadas resultan:

T, =p; Y =0 0<i<m (19)
x; = p;cos(m/12),y; = p; sen(n/12) m<1i<2m (20)
x; = p;cos(m/6),y; = p; sen(n/6) 2m < i < 3m (21)

donde m es la cantidad el elementos de la sucesion p.
La matriz de conectividad para las dos filas se construye de la siguiente manera:

e =li,i+ 1,0+ 14+ m,i+m]| 0<i<m-—1 (22)
ei=i+myi+1+m,i+142m,i+ 2m)] m—1<i<m-—2 (23)
En la figura 4 puede verse la malla de elementos finitos obtenida para el caso de d = 150 mm

yL=1m.
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Figura 4: Malla de elementos finitos utilizada para el caso de d = 150(mm) y L = 1(m) y a = 0,3R.

4. DATOS DE CORRIDAS Y RESULTADOS

Se realizaron 20 corridas en total, en las cuales se vario el diametro de la resistencia desde
50 hasta 300 mm y la distancia entre el centro de la resistencia y la termocupla desde 0.75 hasta
1.5 m, ya que estos son valores tipicos utilizados en la industria.

Se aplic6 una temperatura constante de 350 °C' a los nodos de las resistencias. El incremento
temporal es de 1 hora. La corrida termina cuando el punto de la termocupla, el mas alejado de
la resistencia, alcanza los 100°C.

Como caso particular, d = 150 mm y L = 1m, se muestran las temperaturas en la 2da fila
de nodos, en 4 instantes de tiempo en la figura 5. Puede notarse como se eleva la temperatura
progresivamente desde la resistencia a las zonas mads alejadas.

400
350
300
250
200
150
100
50
0

—@— 4 dias
8 dias
12 dias

Temperatura [°C]

—@— 16 dias

0 0.2 0.4 0.6 0.8 1 1.2

Posicidn radial [m]

Figura 5: Temperaturas para 2da fila de nodos en 4 instantes de tiempo parael casode d = 0,15my L = 1m.
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En la figura 6 se muestran los tiempo de secado para los 20 casos analizados, cada curva
corresponde a una longitud L particular, y cada punto corresponde a un diametro de resistencia.
El orden de magnitud de los tiempos de secado calculados son comparables con los tiempos re-
portados en proyectos de remediacion de suelos por desorcion térmica mediante calentamiento
por conduccién (Uffer, 2024).

60
)
O 50
=
-8 40
S —@—1=0.75m
2 30
0] —@—L=1m
2 20
8_ L=1.25m
£ 10
K3 —0—L=15m
'_

0
0 100 200 300 400

Diametro de la resistencia [mm]
Figura 6: Tiempo de secado dependiendo del la distancia entre la resistencia y el sensor y el radio de la resistencia.

Para verificar la independencia con los resultados con la malla de elementos finitos se realiza-
ron 8 corridas, variando el parametro n, cantidad de nodos en la discretizacion de la coordenada
radial, figura 7. En el eje principal se muestran los tiempos de secado para cada corrida, y en
el eje secundario error porcentual que se obtiene en cada caso. Puede notarse que con la peor
malla el error es muy pequefio, 0.014 %.

—@—Tiempo secado —@—Error %

_ 162 0.014
8 16.15 0.012
©
< 161 0.01
®
g 16.05 0.008 ¢
@]
g 16 0.006 E
S 15.95 0.004
é 15.9 0.002
& 15.85 0
=

7 10 15 20 30 60 80 100
Cantidad de nodos radiales, n

Figura 7: Independencia de malla.
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S. CONCLUSIONES

Se determinaron tiempos de secado del material para distintos valores tipicos de didmetro de
resistencia y distancia entre el centro de la resistencia y la termocupla, figura 6. Esto se hizo
para distribucion triangular, en la cual la termocupla se ubica a la misma posicion de tres resis-
tencias.

Como es de esperar, los tiempos disminuyen fuertemente con el didmetro de la resistencia, ya
que aumenta la superficie de contacto. Y en contraposicion, disminuyen con la distancia entre
el centro de la resistencia y la termocupla. Esto se debe a que para el mismo espacio se ubican
menos resistencias.

Este andlisis se hizo para determinar el tiempo necesario para eliminar la humedad del ma-
terial. Con el mismo procedimiento, cambiando los parametros de corrida se puede determinar
el tiempo hasta que se eliminan otros componentes, como hidrocarburos, por ejemplo.

Si se quiere aplicar el procedimiento a otro material, es necesario conocer las propiedades
del material. De todos modos, solo aplica a materiales muy porosos. Ya que aqui se considera
que una vez que el material alcanza los 100 °C' la humedad se evapora y circula libremente por
los poros del material hasta los extractores. Un material que no sea tan poroso requiere un mo-
delo de transferencia de masa para la humedad, o del componente que se quiera analizar.

La generacion de la malla desde el mismo c6digo resulta un método muy efectivo para anali-
zar multiples casos geométricos. A su vez, la progresion aritmética es particularmente efectiva
para analizar este tipo de problemas, porque en la zona cercana a la resistencia el gradiente es
muy elevado y luego decrece.
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ANEXO: CODIGO IMPLEMENTADO EN PYTHON PARA LA GENERACION DE LA
MALLA

from numpy import cos,sin, pi

L=1.5

R=0.15

p=I[R]

r min = R

r_max = Lxcos(pi/6)

n_points = 30

a = Rx0.1

S r_max — r_min

N = n_points — 1

d = (2«S/N - 2xa) / (N - 1)

distances = [a + ixd for 1 in range(N)]

p = [r_min]

for dist in distances:
p.append(p[—-1] + dist)

x=[]

y=I1

for

i in range(len(p)):
x.append (p[1i])
y.append (0)
for i in range(len(p)-1):
x.append(p[i]xcos(pi/12))
y.append(p[i]*sin(pi/12))
x.append (p[-1])
y.append (Lxsin(pi/6)/2)
for i in range(len(p)-1):
x.append(p[i]xcos(pi/6))
y.append(p[i]*sin(pi/6))
x.append (p[-1])
y.append (Lxsin(pi/6))
Ele =[]
for i in range(len(p)-1):
Ele.append ([i+1+len(p),i+len(p),i,i+1])
for i in range(len(p)-1):
Ele.append ([i+1+len(p)*2,i+len(p)*2,i+len(p),i+1+len(p)])
NBC=[[0,len(p).,2«len(p)]]
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