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Resumen. La desorción térmica es una tecnología de remediación de suelos que emplea calor para se-

parar contaminantes volátiles y semivolátiles presentes en suelos, lodos y sedimentos. Se clasifica como

un proceso de separación física, no destructivo. El procedimiento consiste en calentar el material conta-

minado en un desorbedor térmico, provocando la evaporación de los contaminantes. Estos vapores son

posteriormente capturados y tratados, mientras que el suelo descontaminado puede reutilizarse, común-

mente como material de relleno. Para optimizar este proceso, es fundamental que el modelo térmico

represente con precisión los mecanismos de transferencia de calor, permitiendo predecir la distribución

de temperatura en el suelo y la eficiencia de la vaporización de los contaminantes. En este estudio se

analizan las dimensiones características del equipo con el fin de estimar el tiempo requerido para el trata-

miento. Se obtienen curvas de diseño que permiten dimensionar adecuadamente las resistencias térmicas

y determinar su disposición óptima.

Keywords: Thermal Desorption, Drying of Porous Materials, Thermal Modeling with Finite Elements,

Automatic Mesh Generation, Geometric Optimization.

Abstract. Thermal desorption is a soil remediation technology that uses heat to separate volatile and

semi-volatile contaminants present in soils, sludges, and sediments. It is classified as a physical, non-

destructive separation process. The procedure involves heating the contaminated material in a thermal

desorber, causing the contaminants to evaporate. These vapors are subsequently captured and treated,

while the decontaminated soil can be reused, commonly as backfill material. To optimize this process,

it is essential that the thermal model accurately represents the heat transfer mechanisms, enabling the

prediction of temperature distribution within the soil and the efficiency of contaminant vaporization.

This study analyzes the characteristic dimensions of the equipment in order to estimate the treatment

time. Design curves are obtained to properly size the thermal resistances and determine their optimal

arrangement.
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1. INTRODUCCIÓN

La creciente explotación de recursos no convencionales ha intensificado la generación de

residuos contaminantes, especialmente en suelos afectados por hidrocarburos y compuestos or-

gánicos persistentes. En este contexto, la desorción térmica se ha consolidado como una tecno-

logía eficaz para la remediación ambiental (U.S. Environmental Protection Agency, 2001), al

permitir la separación física de contaminantes mediante la aplicación controlada de calor. Este

proceso no destructivo posibilita la recuperación del suelo tratado, que puede reutilizarse como

material de relleno, sin alterar su estructura física (Zhang et al., 2019; Vidonish et al., 2016).

La eficiencia del proceso depende críticamente de alcanzar temperaturas adecuadas para

volatilizar los contaminantes. En particular, la eliminación de carburos y compuestos semivo-

látiles requiere rangos térmicos elevados, típicamente entre 360 °C y 540 °C, mientras que los

compuestos más volátiles pueden ser removidos a temperaturas más bajas (Public Services and

Procurement Canada, 2025). La correcta distribución de las resistencias calefactoras y el dise-

ño térmico del equipo son factores clave para garantizar una transferencia de calor eficiente y

homogénea en el medio poroso.

Sin embargo, en este trabajo se considera exclusivamente el proceso de eliminación de hu-

medad, como etapa preliminar del tratamiento térmico. Esta simplificación permite optimizar

la geometría y disposición de las resistencias calefactoras, evaluando su influencia sobre los

tiempos de calentamiento y la eficiencia energética del sistema. La humedad, al ser el primer

componente en evaporarse, condiciona la dinámica térmica inicial y su remoción efectiva es

esencial para preparar el suelo para etapas posteriores de desorción de hidrocarburos.

2. EQUIPO

El material se calienta mediante resistencias calefactoras. Se ubican extractores para eliminar

la humedad evaporada del material. También se ubican termocuplas para medir la temperatura

del material y de las resistencias. Un sistema de control de lazo cerrado opera las resistencias,

para que su temperatura cumpla un calentamiento establecido. Cuando la termocupla del mate-

rial se ubica en forma centrada con tres resistencias la configuración se llama triangular, figura

1. También se puede acomodar siguiendo un hexágono (Xu et al., 2022), en ese caso, se ubica

el sensor equidistantemente de 6 resistencias.

Resistencias

19,71

32,62

Sensores

Figura 1: Esquema triangular, ubicación de las resistencias y los sensores de temperatura en el interior del equipo.
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El objetivo de este trabajo es determinar tiempos de secado para distintas configuraciones

geométricas del equipo, por lo tanto, se define en forma genérica la distancia entre las resisten-

cias y los sensores como L, y el diámetro de la resistencias como d, figura 2 (a).

d

L 1.
5 

L

(a) (b)

Figura 2: Geometría característica (a); condiciones de simetría y dominio resultante (b) .

Dado que los equipos son muy grandes se aplican una gran cantidad de resistencias, por lo

que el patrón triangular se repite una cantidad indefinida de veces. Despreciando los efectos

de borde en las paredes del equipo, se pueden utilizar condiciones de simetría para achicar el

dominio del análisis. En la figura 2 (b) se muestran las rectas de simetría utilizadas con línea de

puntos, y el dominio resultante con sombreado.

3. METODOLOGÍA

3.1. Formulación del modelo matemático

La ecuación

(ρcP )eff

∂T

∂t
= ∇ · (λeff∇T )− ργeff ṁ (1)

describe el balance de energía térmica en un medio poroso heterogéneo durante el proceso de

desorción térmica. A continuación se detallan los parámetros involucrados:

ρ: densidad del medio [kg/m3]

cP : capacidad calorífica a presión constante [J/(kg·◦C)]

λ: conductividad térmica [W/(m·◦C)]

γ: calor latente de evaporación [J/kg]

ṁ: flujo másico de evaporación [kg/s]
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En la fórmula anterior, el subíndice eff surge de homogeneizar las propiedades térmicas te-

niendo en cuenta la presencia de suelo, humedad e hidrocarburos. Sin embargo, en este estudio

se tuvo en cuenta el hecho de que la energía requerida exclusivamente por el proceso de desor-

ción es mucho menor que la energía requerida para el calentamiento del suelo, por lo cual el

análisis del efecto de la distribución de las resistencias calefactoras sobre el proceso de calenta-

miento se efectúa desacoplando los fenómenos de calentamiento y desorción.

Bajo estas hipótesis, el modelo se focaliza sobre los aspectos difusivos, de forma tal que la

ecuación 1 resulta:

∂T

∂t
= α∇2T (2)

siendo α la difusividad térmica la cual se considera dependiente de la temperatura de la siguiente

manera

α(T ) =

[

2 +
T − 10 ◦C

400 ◦C− 10 ◦C

]

× 10−7 m2/s (3)

para tener en cuenta el efecto del proceso de desorción sobre las propiedades térmicas del ma-

terial que se está tratando. En este caso en particular, se ha considerado un aumento lineal de la

difusividad de 2 ×10−7 m2/s a 3 ×10−7 m2/s cuando la temperatura aumenta de 10°C a 400°C

respectivamente.

3.2. Formulación numérica

Para la resolución numérica del modelo térmico se adopta el método de elementos finitos

utilizando una formulación iso-paramétrica. Dado que las resistencias calefactoras se disponen

en forma vertical cubriendo toda la altura del material a tratar, a los efectos de este análisis es

suficiente con discretizar las dos dimensiones horizontales para lo cual se utilizan elementos

finitos de 4 nodos que se muestran en la figura (3.2) .

Las siguientes son las ecuaciones de las funciones de forma referidas al sistema de referencia

propio de cada elemento:

(1,1)

(-1,1)

(-1,-1) (-1,1)

r

s

Figura 3: Elemento paramétrico lineal de 4 nodos.

h1 =
(1 + r)(1 + s)

4

h2 =
(1− r)(1 + s)

4

h3 =
(1− r)(1− s)

4

h4 =
(1 + r)(1− s)

4

(4)

La evolución térmica se calcula integrando numéricamente en el tiempo mediante un método

de segundo orden, implícito e incondicionalmente estable (Crank y Nicolson, 1947) para lo

cual en cada paso de tiempo ∆t se resuelve el siguiente sistema de ecuaciones lineales con las

rutinas de la biblioteca numpy. La difusividad térmica α se actualiza en cada instante utilizando
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la temperatura media de cada elemento. Esta simplificación evita el costo computacional de

resolver iterativamente la nolinealidad del problema, resultando efectiva dado que se trata de una

nolinealidad suave, definida por la ecuación 3, y los pasos de tiempo utilizados son pequeños

frente a la duración del proceso de calentamiento.

AT p+1 = b (5)

siendo

A =
Cg

∆t
+ 0,5Kg (6)

b =

(

Cg

∆t
− 0,5Kg

)

T p (7)

Las matrices globales Cg y Kg surgen del ensamble de las siguientes matrices elementales.

Ce =

∫

1

−1

∫

1

−1

H(r, s) H(r, s)T det(J(r, s)) dr ds (8)

Ke =

∫

1

−1

∫

1

−1

∇Hx,y(r, s)α (∇Hx,y(r, s))
T det(J(r, s)) dr ds (9)

donde el arreglo H contiene a las funciones de forma (ecuación 4). El gradiente espacial de las

mismas se calcula como

∇Hx,y(r, s) = ∇Hr,s(r, s)(J(r, s))
−1 (10)

a través del gradiente local y el jacobiano de la transformación entre coordenadas globales y

locales.

∇Hr,s(r, s) =























∂h1

∂r

∂h1

∂r
∂h2

∂s

∂h2

∂s
∂h3

∂s

∂h3

∂s
∂h4

∂s

∂h4

∂s























(11)

J(r, s) =







∂x

∂r

∂y

∂r
∂x

∂s

∂y

∂s






(12)

Las temperaturas de las resistencias, definidas por el sistema de control a lazo cerrado, se

imponen como condiciones de borde esenciales (Dirichlet) en el extremo izquierdo de la malla.

En el resto de los contornos del dominio de cálculo se aplican condiciones de simetría, tal como

se muestra en la figura 2 b). En los problemas térmicos, la condición de simetría requiere que el

gradiente térmico normal a dicho contorno sea nulo por lo cual también resulta adiabático. Por

este motivo, no es necesario imponer condiciones de borde adicionales en esos contornos, ya

que la formulación débil del problema térmico conduce naturalmente a condiciones adiabáticas.

La corrida se realiza hasta que la temperatura del nodo correspondiente a la termocupla supera
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los 100°C, por lo que el código imprime como resultado el tiempo hasta que se seca el material.

Toda la formulación numérica fue implementada en lenguaje Python mediante un código

propio desarrollado en la Universidad Austral por el primer autor, denominado ThermAU.v1.

3.3. Malla de elementos finitos

Como se requerían hacer múltiples corridas para distintos valores de L y d, se realizó un

código que genera la malla de elementos finitos de manera sistemática. El código se puede ver

en el anexo.

Se construye la malla para el dominio visto en la figura 2 b. Con una sucesión aritmética

se definen las coordenadas radiales de n puntos desde la superficie de la resistencia hasta la

posición de la termocupla:

p0 = d/2 (13)

pn−1 = L cos(π/6) (14)

Los parámetros de la sucesión son;

S = pn−1 − p0 (15)

N = n− 1 (16)

d = 2
S
N
− a

N − 1
(17)

Por lo que la sucesión resulta:

pi+1 = pi + id+ a; 0 ≤ i ≤ n− 2 (18)

La primera fila de nodos tiene el valor de p en la coordenada x y 0 en la coordenada y. Luego,

la segunda fila y la tercera filas son rotaciones π/12 y π/6 desde el centro de la resistencia.

Las coordenadas resultan:

xi = pi, yi = 0 0 ≤ i < m (19)

xi = pi cos(π/12), yi = pi sen(π/12) m ≤ i < 2m (20)

xi = pi cos(π/6), yi = pi sen(π/6) 2m ≤ i < 3m (21)

donde m es la cantidad el elementos de la sucesión p.

La matriz de conectividad para las dos filas se construye de la siguiente manera:

ei = [i, i+ 1, i+ 1 +m, i+m] 0 ≤ i < m− 1 (22)

ei = [i+m, i+ 1 +m, i+ 1 + 2m, i+ 2m] m− 1 ≤ i < m− 2 (23)

En la figura 4 puede verse la malla de elementos finitos obtenida para el caso de d = 150mm
y L = 1m.
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Figura 4: Malla de elementos finitos utilizada para el caso de d = 150(mm) y L = 1(m) y a = 0,3R.

4. DATOS DE CORRIDAS Y RESULTADOS

Se realizaron 20 corridas en total, en las cuales se varió el diámetro de la resistencia desde

50 hasta 300 mm y la distancia entre el centro de la resistencia y la termocupla desde 0.75 hasta

1.5 m, ya que estos son valores típicos utilizados en la industria.

Se aplicó una temperatura constante de 350 oC a los nodos de las resistencias. El incremento

temporal es de 1 hora. La corrida termina cuando el punto de la termocupla, el más alejado de

la resistencia, alcanza los 100 oC.

Como caso particular, d = 150mm y L = 1m, se muestran las temperaturas en la 2da fila

de nodos, en 4 instantes de tiempo en la figura 5. Puede notarse como se eleva la temperatura

progresivamente desde la resistencia a las zonas más alejadas.

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2

T
e

m
p

e
ra

tu
ra

 [
°C

]

Posición radial [m]

4 días

8 días

12 días

16 días

Figura 5: Temperaturas para 2da fila de nodos en 4 instantes de tiempo para el caso de d = 0,15m y L = 1m.
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En la figura 6 se muestran los tiempo de secado para los 20 casos analizados, cada curva

corresponde a una longitud L particular, y cada punto corresponde a un díametro de resistencia.

El orden de magnitud de los tiempos de secado calculados son comparables con los tiempos re-

portados en proyectos de remediación de suelos por desorción térmica mediante calentamiento

por conducción (Uffer, 2024).
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Figura 6: Tiempo de secado dependiendo del la distancia entre la resistencia y el sensor y el radio de la resistencia.

Para verificar la independencia con los resultados con la malla de elementos finitos se realiza-

ron 8 corridas, variando el parámetro n, cantidad de nodos en la discretización de la coordenada

radial, figura 7. En el eje principal se muestran los tiempos de secado para cada corrida, y en

el eje secundario error porcentual que se obtiene en cada caso. Puede notarse que con la peor

malla el error es muy pequeño, 0.014 %.
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Figura 7: Independencia de malla.
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5. CONCLUSIONES

Se determinaron tiempos de secado del material para distintos valores típicos de diámetro de

resistencia y distancia entre el centro de la resistencia y la termocupla, figura 6. Esto se hizo

para distribución triangular, en la cual la termocupla se ubica a la misma posición de tres resis-

tencias.

Como es de esperar, los tiempos disminuyen fuertemente con el diámetro de la resistencia, ya

que aumenta la superficie de contacto. Y en contraposición, disminuyen con la distancia entre

el centro de la resistencia y la termocupla. Esto se debe a que para el mismo espacio se ubican

menos resistencias.

Este análisis se hizo para determinar el tiempo necesario para eliminar la humedad del ma-

terial. Con el mismo procedimiento, cambiando los parámetros de corrida se puede determinar

el tiempo hasta que se eliminan otros componentes, como hidrocarburos, por ejemplo.

Si se quiere aplicar el procedimiento a otro material, es necesario conocer las propiedades

del material. De todos modos, solo aplica a materiales muy porosos. Ya que aquí se considera

que una vez que el material alcanza los 100 oC la humedad se evapora y circula libremente por

los poros del material hasta los extractores. Un material que no sea tan poroso requiere un mo-

delo de transferencia de masa para la humedad, o del componente que se quiera analizar.

La generación de la malla desde el mismo código resulta un método muy efectivo para anali-

zar múltiples casos geométricos. A su vez, la progresión aritmética es particularmente efectiva

para analizar este tipo de problemas, porque en la zona cercana a la resistencia el gradiente es

muy elevado y luego decrece.
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ANEXO: CÓDIGO IMPLEMENTADO EN PYTHON PARA LA GENERACIÓN DE LA
MALLA

from numpy import cos , s i n , p i

L=1 .5

R=0.15

p =[R]

r_min = R

r_max = L* cos ( p i / 6 )

n _ p o i n t s = 30

a = R* 0 . 1

S = r_max − r_min

N = n _ p o i n t s − 1

d = (2* S /N − 2* a ) / (N − 1)

d i s t a n c e s = [ a + i *d f o r i in range (N) ]

p = [ r_min ]

f o r d i s t in d i s t a n c e s :

p . append ( p [ −1] + d i s t )

x = [ ]

y = [ ]

f o r i in range ( l e n ( p ) ) :

x . append ( p [ i ] )

y . append ( 0 )

f o r i in range ( l e n ( p ) − 1 ) :

x . append ( p [ i ]* cos ( p i / 1 2 ) )

y . append ( p [ i ]* s i n ( p i / 1 2 ) )

x . append ( p [ − 1 ] )

y . append ( L* s i n ( p i / 6 ) / 2 )

f o r i in range ( l e n ( p ) − 1 ) :

x . append ( p [ i ]* cos ( p i / 6 ) )

y . append ( p [ i ]* s i n ( p i / 6 ) )

x . append ( p [ − 1 ] )

y . append ( L* s i n ( p i / 6 ) )

E le = [ ]

f o r i in range ( l e n ( p ) − 1 ) :

E le . append ( [ i +1+ l e n ( p ) , i + l e n ( p ) , i , i + 1 ] )

f o r i in range ( l e n ( p ) − 1 ) :

E le . append ( [ i +1+ l e n ( p ) * 2 , i + l e n ( p ) * 2 , i + l e n ( p ) , i +1+ l e n ( p ) ] )

NBC= [ [ 0 , l e n ( p ) , 2 * l e n ( p ) ] ]
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