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Abstract. This paper describes the development of one-dimensional beam elements and three-

dimensional finite elements with moving meshes for applications on vibration estimation of 

semi-infinite elastic homogeneous media due to moving loads, such as trains on rail tracks or 

vehicles on roads. A conventional finite-element strategy requires very large meshes to allow 

the estimation of induced vibration of a moving vehicle, because a large portion of the mesh is 

required to model the distance travelled by the vehicle during simulation, in addition to a 

domain required at both sides of the moving vehicle at start and finish time of the simulation. 

An alternative approach is the use of moving elements to ensure that the loads do not 

approach the boundaries of the model, determining a significant reduction of the mesh size. 

The moving mesh moves at the speed of the vehicle, maintaining the contact-points location 

in the moving reference frame. Using this strategy, a time-invariant model can be obtained for 

constant velocity load or vehicle analysis in the case of homogeneous media. Random process 

modelling of roughness of the rails, track or road allows the assessment of its effect on 

induced vibration of moving vehicles on infinite media. Different vehicle models can be 

connected the moving mesh model, including different number of wheel axes by defining 

nodes of the mesh bellow each wheel, making the formulation very practical. Some 

application examples of the modelling technique are presented. 
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1 INTRODUCTION 

To predict ground-borne vibration due to railway traffic or different moving vehicles on 

roads, accurate computational models are required.  Vibrations are caused by several 

excitation mechanisms, such as moving contact, moving loads, wheel and track unevenness, 

among other reasons. Several authors have studied moving loads or masses on infinite elastic 

domains (Steele, 1967; Fryba,1999; Anderson et al., 2001). Analytical solutions for the 

dynamic response of an infinite beam resting on a viscoelastic foundation and subjected to 

arbitrary dynamic loads have been developed by Yu and Yuang, 2014 among other authors. 
 

Since domains are infinite, a typical finite-element (FE) mesh models a portion of the 

domain and incorporates appropriate absorbing boundary conditions to try to emulate the 

behavior of an infinite domain with the finite domain. In the cases of moving loads, moving 

mass in contact with the domain, or moving vehicle on a road or rail, the estimation of 

induced vibration may require large domains so that the moving contact/load stays within the 

mesh limits for the simulation time at the assumed velocity of the contact. This could require 

large meshes and substantial computational effort. As an alternative, this paper explores the 

use of moving meshes as a computationally efficient method to handle this type of problems. 

The method requires that the modeled infinite domain is homogeneous and allows the 

consideration of representing moving loads, moving masses in contact with the elastic domain 

or vehicle models in contact with the elastic domain at a finite number of points that maintain 

relative distance (see Figure 1).  

 

 

         
 
 

 
 

 

Figure 1. Problems of moving load, mass or vehicle on infinite elastic media. 
 

The basic concept of moving mesh is to use a moving reference frame (relative 

coordinates), modelling the displacement fields using relative coordinates. The speed of the 

moving frame is that of the moving load/moving mass or moving vehicle.  

 

 

 

 

 

 
 

 

Figure 2. Moving load on a beam on elastic foundation. 

 

To illustrate the concept of moving elements or moving frame of reference let’s consider a 
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homogeneous beam on elastic foundation supporting a moving load that moves at constant 

horizontal velocity 𝑣𝑜 (Figure 2). The expressions of the time derivative of the vertical 

displacement field of a beam and its curvature are analyzed because these fields define the 

kinetic and elastic potential energy of a Bernoulli beam model. The vertical displacement 𝑢(𝑥, 𝑡) of the beam section located at a distance 𝑥 from a fixed frame of reference (as that 

depicted in light blue in Figure 2) can be defined in a moving frame of reference at constant 

velocity 𝑣𝑜(as that depicted in red in Figure 2) using a relative coordinate 𝑠, such that 𝑠 = 𝑥 − 𝑣𝑜 𝑡, defining a function 𝑟(𝑠, 𝑡): 
 𝑢(𝑥, 𝑡) = 𝑟(𝑠, 𝑡) = 𝑟(𝑥 − 𝑣𝑜 𝑡, 𝑡)                                    (1) 

 

The vertical velocity of the section can be expressed in terms of the field 𝑟(𝑠, 𝑡) as 
 𝜕𝑢(𝑥,𝑡)𝜕𝑡 = 𝜕𝑟(𝑠,𝑡)𝜕𝑠 𝑑𝑠𝑑𝑡 +  𝜕𝑟(𝑠,𝑡)𝜕𝑡 = − 𝜕𝑟(𝑠,𝑡)𝜕𝑠 𝑣𝑜 + 𝜕𝑟(𝑠,𝑡)𝜕𝑡                                 (2) 
 

since 
𝑑𝑠𝑑𝑡 = −𝑣𝑜. On the other hand, because 

𝑑𝑠𝑑𝑥 = 1, the curvature of the Bernoulli beam 

for small deformations can be computed as 
 𝜕2𝑢(𝑥,𝑡)𝜕𝑥2 = 𝜕𝜕𝑥 (𝜕𝑟(𝑠,𝑡)𝜕𝑠 𝑑𝑠𝑑𝑥) = 𝜕𝜕𝑥 (𝜕𝑟(𝑠,𝑡)𝜕𝑠 1) = 𝜕2𝑟(𝑠,𝑡)𝜕𝑠2 𝑑𝑠𝑑𝑥 = 𝜕2𝑟(𝑠,𝑡)𝜕𝑠2                      (3)  
 

 

Equations (2) and (3) allow the construction of a discrete model of a moving mesh 

(moving reference frame) using standard interpolation functions, nodal displacements as 

generalized coordinates, and using a Lagrange formulation for the equations of motion in 

these generalized coordinates:  𝑑𝑑 𝜕𝑇𝜕�̇� − 𝜕𝑇𝜕𝒒 + 𝜕𝑈𝜕𝒒 = 𝑸𝒏𝒄                                         (4) 
 

The kinetic energy of a single FE of length 𝐿 (neglecting rotational inertia of the beam 

sections) can be expressed as 𝑇 = 12 ∫ 𝜌𝐴 (− 𝜕𝑟(𝑠,𝑡)𝜕𝑠 𝑣𝑜 + 𝜕𝑟(𝑠,𝑡)𝜕𝑡 )𝑇𝐿0 (− 𝜕𝑟(𝑠,𝑡)𝜕𝑠 𝑣𝑜 + 𝜕𝑟(𝑠,𝑡)𝜕𝑡 ) 𝑑𝑠         (5) 

 

where 𝜌 and 𝐴 are the density and the cross section of the beam. Eq. (5) indicates that the 

kinetic energy of a continuum model discretized by interpolation functions in relative 

coordinates in a constant velocity reference frame, leads to an expression of kinetic energy 

with three terms: a quadratic form of time-derivatives of the nodal displacements, a linear 

form of the time-derivatives of the nodal displacements, and a quadratic for of the nodal 

displacements. This implies that additional terms in the differential equations in addition to 

mass matrix times the second derivatives of nodal displacements of conventional formulation 

with fixed reference frame will be present. On the other hand, because curvature (as Eq. (3) 

indicates) or strains in a general finite-element model with linear kinematics do not involve a 

change in the differential operator on 𝑟(𝑥, 𝑡) because 
𝑑𝑠𝑑𝑥 = 1, the elastic potential energy of 

the model using interpolating functions in terms of relative coordinates in a moving frame 

results in a quadratic form of the nodal displacements, leading to the same stiffness matrix for 

small nodal displacements that would result in a conventional finite-element with fixed 

reference frame.  

 

This implies that a set of finite elements of homogeneous beam elements (Bernoulli or 

other models on elastic foundation) with moving reference frame can provide a very versatile 

method for estimating the motion of the beam with accuracy on the vicinity of the moving 
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load/moving mass/moving vehicle in contact with the beam on elastic foundation. Because 

the elements located very far from the moving load/moving mass or moving vehicle in contact 

with the elastic supporting domain do not affect significantly the displacements in the vicinity 

of the moving load/moving mass or moving vehicle, a finite fixed-size mesh can be used to 

accurately estimate the displacements 𝑟(𝑠, 𝑡) using a discrete Lagrange formulation, that leads 

to differential equations in the nodal displacements/rotations that scale the interpolation 

functions in the assumed kinematic model. 
 

To obtain the general form of the differential equations that derive from the type of kinetic 

energy that would imply the use of displacement fields interpolated as 
 𝑟(𝑠, 𝑡) = ∑ 𝑁𝑖(𝑟)𝑁𝑞𝑖=1 𝑞𝑖(𝑡)                                           (5) 
 

we use the Matlab® symbolic toolbox. The differential of the kinetic energy (𝑑𝑇) is 

obtained for a case of 2 generalized coordinates 𝑞𝑖(𝑡) (𝑖 = 1,2) and the Lagrange operator, 𝑑𝑑𝑡 𝜕𝑑𝑇𝜕�̇� − 𝜕𝑑𝑇𝜕𝒒 , that leads to the differential equations contribution is applied to that kinetic 

energy differential, 𝑑𝑇, to obtain the expressions to be integrated to compute the matrices that 

multiply �̈�(𝑡), �̇�(𝑡), and 𝑞(𝑡) (𝑀,𝐺,𝐻) in the differential equations of the model. The code 

and the analytical expressions of 𝑑𝑀, 𝑑𝐺 and 𝑑𝐻 are shown for two generalized coordinates, 𝑞1(𝑡) and 𝑞2(𝑡). These expressions can be generalized for a general 𝑁-degree-of-freedom 

model. 
 

syms q1 q2 q1d q2d q1dd q2dd vo rho N1 N2 N1p N2p N1pp N2pp 
q=[q1;q2];      % Generalized coordinates 
qd=[q1d;q2d];   % Generalized coordinates time derivatives 
N=[N1 N2];      % Interpolation functions matrix 
Np=[N1p N2p];   % Derivatives of interpolation functions matrix 
Npp=[N1pp N2pp];% Second derivatives of interpolation functions matrix 

 
ud=N*qd-vo*Np*q; % Velocity field ud 
T=1/2*rho*transpose(ud)*ud; % Differential of kinetic energy 
% First term of Lagrange operator on T 
dTqd=[diff(T,q1d);diff(T,q2d)]; % First term of Lagrange operator on T 
% Total time derivative of dTqd 
d_dTqd_dt=diff(dTqd,q1)*q1d+diff(dTqd,q2)*q2d+diff(dTqd,q1d)*q1dd+diff(dTqd,q2d)*q2dd+  
         +diff(dTqd,N1)*N1p*(-vo)+diff(dTqd,N2)*N2p*(-vo)+diff(dTqd,N1p)*N1pp*(vo)+ …  
         diff(dTqd,N2p)*N2pp*(-vo); 
% Second term of Lagrange operator on T 
dT_dq=[diff(T,q1);diff(T,q2)]; 
% ODE differential equations obtained by Lagrange formulation 

   Lagrange_Eqs=d_dTqd_dt-dT_dq; 
% Differential matrices of ODE in generalized coordinates q 
dM(:,1)=diff(Lagrange_Eqs,q1dd);  
dM(:,2)=diff(Lagrange_Eqs,q2dd); 
dG(:,1)=diff(Lagrange_Eqs,q1d); 
dG(:,2)=diff(Lagrange_Eqs,q2d); 
dKvo(:,1)=diff(Lagrange_Eqs,q1); 
dKvo(:,2)=diff(Lagrange_Eqs,q2); 

    
   % Computed analytical expressions of dM, dG and dH matrices are: 

dM =[ N1^2*rho,   N1*N2*rho] 
    [ N1*N2*rho,  N2^2*rho] 
  
dG =[ -2*N1*N1p*rho*vo, -2*N1*N2p*rho*vo] 
    [ -2*N2*N1p*rho*vo, -2*N2*N2p*rho*vo] 
  
dH = [ N1*N1pp*rho*vo^2, N1*N2pp*rho*vo^2] 
     [ N2*N1pp*rho*vo^2, N2*N2pp*rho*vo^2] 
  

The integration of these differentials in the domain of an element gives the element 

matrices 𝑴𝑒, 𝑮𝑒, 𝑯𝑒 of an arbitrary FE derived from kinetic energy for a set of interpolating 
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functions. The inclusion of the elastic potential energy defines the element stiffness matrix 𝑲𝑒 

for the model in generalized coordinates. Therefore, the assembly at structural level of this 

type of element matrices in the absence of damping, leads to global matrices 𝑴, 𝑮, 𝑯 and 𝑲 

that define the ordinary differential equations (ODE) of the form, where 𝑭(𝑡) is an external 

loading vector (including gravity loads and other imposed generalized loads): 
 𝑴�̈�(𝑡) + 𝑮�̇�(𝑡) + (𝑲 + 𝑯)𝒒(𝑡) = 𝑭(𝑡)                          (6) 

 

In section 2 the Bernoulli FE on elastic foundation is presented for constant moving 

velocity 𝑣𝑜 and some application examples of moving load, moving mass, and moving vehicle 

on an infinite homogeneous beam are developed. In section 3 a 3-D 20-node FE for 

homogeneous elastic properties is developed and application example is presented.  

2 MOVING BEAM FINITE ELEMENT 

In this section we derive the equations of motion of a Euler-Bernoulli beam on visco-

elastic foundation using standard Hermite polynomials 𝑁1(𝑠) = 1 − 3𝐿2 𝑠2 + 2𝐿3 𝑠3; 𝑁2(𝑠) =𝑠 − 2𝐿 𝑠2 + 1𝐿2 𝑠3; 𝑁3(𝑠) = 3𝐿2 𝑠2 − 2𝐿3 𝑠3; 𝑁4(𝑠) = − 1𝐿 𝑠2 + 1𝐿2 𝑠3; as interpolation functions for 

a straight beam with 2 nodes with generalized coordinates given by transverse displacement 

of the left node, rotation of the left node, transverse displacement of the right node, and 

rotation of the right node: 
 𝑟(𝑠, 𝑡)  =  𝑵(𝑠) 𝒒(𝑡)         𝑵 = [𝑁1(𝑠)  𝑁2(𝑠)  𝑁3(𝑠)  𝑁4(𝑠)]                  (7) 
 

From Eq. (5) and Eq. (7) the kinetic energy of a single FE (neglecting rotational inertia of the 

beam sections) can be expressed as 𝑇 = 12 ∫ 𝜌𝐴 (− 𝑑𝑵𝑑𝑠  𝒒(𝑡) 𝑣𝑜 + 𝑵(𝑠)�̇�(𝑡))𝑇𝐿0 (− 𝑑𝑵𝑑𝑠  𝒒(𝑡) 𝑣𝑜 + 𝑵(𝑠)�̇�(𝑡)) 𝑑𝑠         (8) 

The potential energy can be expressed as 𝑈 =12 ∫ 𝐸𝐼 (𝑑2𝑵𝑑𝑠2  𝒒(𝑡) )𝑇𝐿0 (𝑑2𝑵𝑑𝑠2  𝒒(𝑡) ) 𝑑𝑠 + 12 ∫ 𝑘𝑓𝐿0 (𝑵 𝒒(𝑡))(𝑵 𝒒(𝑡))𝑇𝑑𝑠 + 12 ∫ 𝑔𝜌𝑵 𝒒(𝑡)𝑑𝑠𝐿0     (9) 

 

where 𝐸, 𝐼, 𝑘𝑓 and 𝑔 are the Young modulus of the beam, the second moment of area of 

the beam, the elastic foundation parameter, and the acceleration of gravity, respectively. 
 

Applying the Lagrange operator 
𝑑𝑑 𝜕𝑇𝜕�̇� − 𝜕𝑇𝜕𝒒 + 𝜕𝑈𝜕𝒒 = 𝑸𝒏𝒄 considering the non-conservative 

force projections 𝑸𝒏𝒄 resulting from viscous foundation with parameter 𝑐𝑓 and external loads 

the equations of motion can be obtained (using the symbolic toolbox of Matlab) for a specific 

element to yield: 
 𝑴𝑒�̈�(𝑡) + (𝑮𝑒(𝑣𝑜) + 𝑪𝑒𝑓)�̇�(𝑡) + (𝑲𝑒𝑏 + 𝑲𝑒𝑓 + 𝑯𝑒(𝑣𝑜2) + 𝑲𝑐𝑓(𝑣𝑜))𝑞(𝑡) = 𝑭𝑛𝑐(𝑡)        (10) 

 

The element matrices 𝑴𝑒,  𝑲𝑒𝑏, 𝑲𝑒𝑓, 𝑯𝑒, 𝑮𝑒, 𝑪𝑒𝑓 and 𝑲𝑐𝑓 are computed using the 

Hermite polynomials using the symbolic toolbox. For the case of constant velocity of the 

reference frame and homogeneous mechanical properties of the beam and foundation, all 

matrices of the beam model are time invariant. This is a very convenient characteristic for 

analysis. 𝐻𝑒 and 𝐺𝑒 are non-symmetric matrices, and 𝑀𝑒, 𝐾𝑒𝑏 and 𝐾𝑒𝑓 are symmetric 

matrices. By a standard assembly procedure the time-invariant matrices of the full model 

(portion of the beam on elastic foundation) can be computed.  
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Me=int(transpose(N)*rho*A*N,s,0,L); % Integration 
Me=rho*A*L*[13/35, (11*L)/210,        9/70, -(13*L)/420; 
           (11*L)/210,    L^2/105,  (13*L)/420,    -L^2/140; 
           9/70, (13*L)/420,       13/35, -(11*L)/210; 
           -(13*L)/420,   -L^2/140, -(11*L)/210,     L^2/105]; 
 
Keb=int(transpose(Npp)*E*A*Npp,s,0,L); % Integration 
Keb=E*I/L^3*[ 12,   6*L,  -12,   6*L; 

           6*L, 4*L^2, -6*L, 2*L^2; 
          -12,  -6*L,   12,  -6*L; 
           6*L,  2*L^2, -6*L, 4*L^2] 
 

Kef=int(transpose(N)*kf*N,s,0,L); 
Kef=L*kf*[13/35,      (11*L)/210,        9/70, -(13*L)/420; 

       (11*L)/210,    L^2/105,  (13*L)/420,    -L^2/140; 
        9/70,      (13*L)/420,       13/35, -(11*L)/210; 
       -(13*L)/420,  -L^2/140,  -(11*L)/210,     L^2/105] 
 

Ge=int(2*transpose(N)*rho*A*vo*Np,s,0,L) 
Ge=rho*A*vo*[1/2,   -L/10,  -1/2,    L/10; 

          L/10,       0, -L/10, L^2/60; 
          1/2,    L/10,  -1/2,   -L/10; 
         -L/10, -L^2/60,  L/10,      0] 
 

He=int(transpose(N)*Np*rho*A*vo^2,s,0,L) 
He=rho*A*vo^2/L*[-6/5,   -(11*L)/10,  6/5, -L/10; 

              -L/10, -(2*L^2)/15, L/10, L^2/30; 
               6/5,         L/10, -6/5,  (11*L)/10; 
              -L/10,       L^2/30, L/10, -(2*L^2)/15] 

 
Cef=int(transpose(N)*N*cf,s,0,L) 
Cef =L*cf*[ 13/35, (11*L)/210,      9/70, -13*L /420] 

       [ 11*L/210,    L^2/105,  13*L/420,   -L^2/140] 
       [     9/70,   13*L/420,     13/35,  -11*L/210] 
       [-13*L/420,   -L^2/140, -11*L/210,    L^2/105] 
  

Kcf=-int(transpose(N)*Np*cf*vo,s,0,L) 
Kcf = cf*vo*[   1/2,   -L/10,  -1/2,   L/10] 

         [  L/10,       0, -L/10, L^2/60] 
         [   1/2,    L/10,  -1/2,  -L/10] 

            [ -L/10, -L^2/60,  L/10,      0] 
    

If a moving external vertical load is applied to a particular node of the moving mesh, it is 

directly assembled at the contact node in the corresponding generalized coordinate. If a 

moving mass 𝑚 (at constant velocity 𝑣𝑜)  in contact with the moving FE beam element is 

analyzed,  the contribution to the equations of motion of the generalized coordinates can 

expressed in terms of the relative coordinate of the mass in the FE, 𝑠𝑚, and the constant 

velocity 𝑣𝑜 computing the corresponding element matrices (𝑀𝑒𝑚, 𝐺𝑒𝑚, 𝐻𝑒𝑚) for assembly in 

the model: 
 

Mem= transpose(N(s_m))*m*N(s_m)) 
 

   Gem=2*transpose(N(s_m))*m*vo*Np(s_m)) 
  

   Hem= transpose(N(s_m))*Np(s_m)*m*vo^2 
 

These element matrices are assembled in the structural model matrices to obtain the ODE 

on the model, including the moving mass and corresponding moving weight. If the moving 

mass is located on a node of the mesh, with local coordinate 𝑠𝑚 = 0, these matrices for 

Hermite polynomial interpolation functions take simple expressions: 
 

Mem = [ m, 0, 0, 0]  Gem = [ 0, 2*m*vo, 0, 0]  Hem = [ 0, m*vo^2, 0, 0] 
      [ 0, 0, 0, 0]        [0,     0, 0, 0]   [ 0,      0, 0, 0] 
      [ 0, 0, 0, 0]        [0,     0, 0, 0]   [ 0,      0, 0, 0] 
      [ 0, 0, 0, 0]               [0,     0, 0, 0]   [ 0,      0, 0, 0] 

 

 Finally, if a vehicle model is moving at constant velocity 𝑣𝑜 on the beam, the mass, 

damping, and stiffness matrices of the vehicle can be assembled at the structural level by 
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extending the generalized coordinate vector of the beam with the generalized coordinates of 

the vehicle model and assembling the contributions of the mass, damping and stiffness 

matrices at the nodes of contact of the vehicle (wheels) on the beam. To simplify the assembly 

process, the beam mesh in relative coordinates must have nodes defined at the contact points 

of the vehicle wheels on the beam. In the following subsection some applications of moving 

load and moving vehicle are presented. It is worth mentioning that this type of models would 

lead to time-varying matrices in the ODEs in a formulation with not-moving mesh. 

2.1 Application examples of beam-FE in moving coordinate system 

 

Stationary deformation for constant moving load  
 

A mesh of 250 elements and 251 nodes separated by FE of 1 m in length is created to analyze 

the stationary response of the beam on elastic foundation subjected to constant moving load 

(shown in Figure 3). The parameters considered for this example are 𝐴 = 1;  𝜌 = 1;  𝐿 = 1;  𝐸 =100000; 𝑣𝑜 = 60;  𝐼 = 1;  𝑃 = 98.1; 𝑘𝑓 = 100, 𝑐𝑓 = 0. Two stationary cases were considered: Case 

1. Vertical external constant load 𝑃 applied in the central node of the mesh (shown in light 

blue in Figure 3), and Case 2: Two vertical external loads of magnitude 𝑃/2  separated by 4 meters (as shown scaled in magenta in Figure 3). The right figure illustrates the estimation 

of stationary solutions of the vertical displacement field for these two cases, 𝑟𝑠𝑡(𝑠), computed 

with the model matrices assembled at a structural model level (251 ×  2 dofs) solving for the 

particular time-independent solution 𝒒𝑝 of the ODE system:  
 (𝑲𝑏 + 𝑲𝑓 + 𝑲𝑐𝑓 + 𝑯) 𝒒𝑝 = 𝑷                                         (11) 

 

As expected, minor differences are observed at sections far from the moving load and a 

smaller peak displacement under the applied loads is obtained for Case 2 (separated loads) 

with respect to Case 1 (concentrated load). 
 
 

 
 
 
 

 
 
 
 
 
 
 

 

Figure 3. Stationary deformation field 𝑟𝑠𝑡(𝑠) for single vertical load (blue lines) and for the same vertical 

load applied in two nodes (magenta lines) 

 

Stationary deformation for moving mass on beam on elastic foundation 
 

To assess the difference in the particular solution between a moving load and moving mass 

modal, the contribution of the lumped mass to the particular solution equation including the 

moving mass is done using the same mesh defined in previous example for a single moving 

load and assembling the moving mass 𝐻𝑒𝑚 element matrix in the global 𝑯𝑚 matrix for the 

element whose left node corresponds to the location of the mass weight: 
 (𝑲𝑏 + 𝑲𝑓 + 𝑲𝑐𝑓 + 𝑯𝑏 + 𝑯𝑚) 𝒒𝑝 = 𝑷                                   (12) 

 

𝑠 𝑣𝑜𝑡 

𝑣𝑜  
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Figure 4 compares the stationary deformation pattern for moving load (previously computed) 

with that considering the moving mass (and weight). The mass is assumed as 𝑚 = 𝑃/𝑔  with 𝑃 = 98.1 and the same parameters used in previous example. For the assumed parameters a 

very small difference is found in the stationary response of both models (moving load in blue 

line and moving mass and weight in red dots).  

 

 
Figure 4. Stationary deformation field 𝑟𝑠𝑡(𝑠) for single vertical load (blue line) and for moving mass with the 

same vertical load (red dots). 

 

Analysis of moving vehicle with roughness contact on a beam on elastic foundation 
 

To illustrate the application of moving mesh to the analysis of a moving vehicle on a beam on 

elastic foundation, including roughness in contact, a simple model is developed with a spring 𝑘𝑛 and no viscous damper in contact between vehicle and beam. Figure 5 shows the 

mechanical parameters of the model and the definition of the generalized displacements. 
.  

 

 

 

 

 

 
 

 

Figure 5. Quarter vehicle model on elastic media with roughness in contact. 
 

If roughness of the wheel or road surface is to be included in to assess its influence in 

vibration of the road-vehicle system, the vertical displacement of the wheel contact can be 

expressed as: 
 𝑟𝑐(𝑡) = 𝑟(𝑠𝑤𝑐 , 𝑡) + 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐) = 𝐿𝑤𝑐  𝒒(𝑡) + 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐)                                (13) 

 

where 𝑠𝑊𝐶 is the relative coordinate of the node of wheel contact under consideration, 𝐿𝑤𝑐 

is the kinematic transformation from FE nodal displacements to 𝑟(𝑠𝑤𝑐, 𝑡), and 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐) 

is the roughness vertical displacement model (deterministic or random). 
 

To construct the model of the vehicle with the vertical displacements 𝑟𝑐(𝑡),   𝑦1(𝑡), and 𝑦2(𝑡) the mass, damping and stiffness matrices of the vehicle model (see Figure 4) are 

assembled: 

𝑦2(𝑡) 

𝑦1(𝑡) 𝑟𝑐(𝑡) = 𝑟(𝑠𝑤𝑐 , 𝑡) + 𝑤(𝑠𝑤𝑐) 𝑣𝑜𝑡 

𝑠 𝑠𝑤𝑐  

𝑚2 

𝑚1 

𝑐𝑠 𝑘𝑠 𝑘𝑛 

𝑦2(𝑡) 

𝑦1(𝑡) 

𝑠 

𝑟𝑐(𝑡) 
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𝑀𝑣 = [0 0 00 𝑚1 00 0 𝑚2]                𝐾𝑣 = [−𝑘𝑛 −𝑘𝑛 0𝑘𝑛 𝑘𝑛 + 𝑘𝑠 −𝑘𝑠0 −𝑘𝑠 𝑘𝑠 ]        𝐶𝑣 = [0 0 00 𝑐𝑠 −𝑐𝑠0 −𝑐𝑠 𝑐𝑠 ]           (14) 

 

If we define as 𝐾𝑏 the stiffness matrix of the beam on elastic foundation in coordinates 𝒒 of 

the beam, and we partition the stiffness matrix of the vehicle model with the slave contact 

displacement 𝑟𝑐(𝑡) and the rest of the generalized coordinates of the vehicle model, 𝒚(𝑡): 
 𝑲𝒗 = [ 𝐾𝑟𝑐𝑟𝑐 𝐾𝑟𝑐𝑦𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ] = [−𝑘𝑛 −𝑘𝑛 0𝑘𝑛 𝑘𝑛 + 𝑘𝑠 −𝑘𝑠0 −𝑘𝑠 𝑘𝑠 ]                     (15) 

 

The elastic potential energy of the model can be expressed as: 
 𝑈 = 12 [𝑞𝑟𝑐𝑦]𝑇  [𝐾𝑏 𝑂 𝑂𝑂 𝐾𝑟𝑐𝑟𝑐 𝐾𝑟𝑐𝑦𝑂 𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ] [𝑞𝑟𝑐𝑦]                                 (16) 

 

Using the following kinematic transformation 
 [𝑞𝑟𝑐𝑦] = [ 𝐼 𝑂𝐿𝑤𝑐 𝑂𝑂 𝐼 ] [𝑞𝑦] + [𝑂10] 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐)                          (17) 

 

The elastic potential energy can be reformulated using Eqs. (16) and (17): 
 𝑈𝑒 = 12 ([ 𝐼 𝑂𝐿𝑤𝑐 𝑂𝑂 𝐼 ] [𝑞𝑦] + [𝑂10] 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐))𝑇  [𝐾𝑏 + 𝐾𝑓 𝑂 𝑂𝑂 𝐾𝑟𝑐𝑟𝑐 𝐾𝑟𝑐𝑦𝑂 𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ] ([ 𝐼 𝑂𝐿𝑤𝑐 𝑂𝑂 𝐼 ] [𝑞𝑦] +

[𝑂10] 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐))          (18) 

Simplifyin, this can be written as 𝑈𝑒 = 12 [𝑞𝑦]𝑇 [𝐾𝑏 + 𝐾𝑓 + 𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐿𝑤𝑐 𝐾𝑟𝑐𝑦𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ] [𝑞𝑦] + + 12 𝐾𝑟𝑐𝑟𝑐𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐)2 + + [𝑞𝑦]𝑇 [𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐾𝑟𝑐𝑦𝑇 ] 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐)          (19) 

 

Finally, applying 
𝜕𝑈𝑒𝜕𝑞  and 

𝜕𝑈𝑒𝜕𝑦  and considering the global road-vehicle model can be 

expressed as: 
 [𝑀𝑏 𝑂𝑂 𝑀𝑦𝑦] [�̈��̈�] + [𝐶𝑓 + 𝐺𝑏 𝑂𝑂 𝐶𝑦𝑦] [�̇��̇�] + [𝐻𝑏 + 𝐾𝑏 + 𝐾𝑓 + 𝐾𝑐𝑓 + 𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐿𝑤𝑐 𝐾𝑟𝑐𝑦𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ] [𝑞𝑦]  =

[ −𝑀𝑏1𝑧−𝑀𝑦𝑦1𝑧] 𝑔 − [𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐾𝑟𝑐𝑦𝑇 ] 𝑤(𝑣𝑜𝑡 + 𝑠𝑤𝑐)              (20) 

 

These differential equations allow the estimation of induced vibrations due to vehicle motion 

and due to roughness at constant circulation velocity. The stationary random process 

contribution of a stationary random roughness process to a specific output vector of interest 
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𝑧(𝑡) (such as nodal displacements or vehicle accelerations) can be characterized by the power 

spectral density matrix: 
 𝑆𝑧𝑧(𝜛) = 𝐻𝑧𝑤∗ (𝜛)𝑆𝑤𝑤(𝜛)𝐻𝑧𝑤𝑇 (𝜛)                                   (21) 

 

where 𝑆𝑤𝑤(𝜛) is the PSD of the road roughness modelled as a stationary random process and 𝐻𝑧𝑤(𝜛) is the frequency response function (FRF) from 𝑤(𝑡) to output vector 𝑧(𝑡) that can be 

computed by transforming to the frequency domain the ODE defined in Eq. (20). For example 

the FRF from 𝑤(𝑡) to generalized coordinates 𝑧(𝑡) = [𝑞𝑦] of the model can be computed 

solving for each frequency 𝜛 the linear set of equations: 
 (−𝜛2 [𝑀𝑏 𝑂𝑂 𝑀𝑦𝑦] + 𝑗𝜛 [𝐶𝑏 + 𝐺𝑏 𝑂𝑂 𝐶𝑦𝑦] +

[𝐻𝑏 + 𝐾𝑏 + 𝐾𝑓 + 𝐾𝑐𝑓 + 𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐿𝑤𝑐 𝐾𝑟𝑐𝑦𝐾𝑟𝑐𝑦𝑇 𝐾𝑦𝑦 ]) 𝐻𝑧𝑤(𝜛) = − [𝐿𝑤𝑐𝑇𝐾𝑟𝑐𝑟𝑐𝐾𝑟𝑐𝑦𝑇 ]                        (22) 

 

Eqs. (21) and (22) can be used to estimate the stationary random response of the model in the 

frequency domain. Alternatively, if a filtered white-noise random process model of the 

roughness process 𝑤(𝑡) is used, the stationary covariance matrix of the generalized 

coordinates can be computed using the Lyapunov equation formulating the model in an 

extended state space. 

3 MOVING 3D 20-NODE FINITE ELEMENT  

Applying the general expressions derived in Section 1 based on the Lagrange operator on the 

kinetic energy of finite elements in relative coordinates (moving mesh at constant speed) we 

derive the FE matrices M,G,H for a 20-node 3-dimensional parallelepiped FE assuming 

moving velocity in the X-direction. The symbolic expressions of the 60x60 matrices are 

obtained and coded for numerical evaluation of model matrices of moving elastic media, that 

can be used to represent supporting soil media of rails or roads. The main part of the code 

used to obtain the FE model matrices is shown: 
 
%% Main steps of code for symbolic matrices computation of 20-Node FE 
syms t r s E nu dx dy dz rho vo real;  % vo is assumed in direction X 
XYZ_Elem=[XYZ(:,1)*dx XYZ(:,2)*dy XYZ(:,3)*dz]; 
N=funcionesForma2(t,r,s); % Create interpolation functions for 20-node isoparametric FE  
[x,y,z]=coordenadasElementales3(XYZ_Elem,N);% Relative coordinates interpolation 
[jacTranspuesta]=matrizJacobiana2(x,y,z,t,r,s); % Compute Jacobian matrix 
  
%% Stiffness matrix computation 
D=matrizD(E,nu); % Constitutive matrix 
derivadaFormaxyz=derivadaFuncionesForma(N,r,t,s,jacTranspuesta); 
B=matrizB(derivadaFormaxyz,N); % B matrix relates strains = B*u 
dKelem=matrizRigidezParaIntegrar2(jacTranspuesta,B,D);% dKelem 
Ke=integrateMatriz_Sym(dKelem,t,r,s);% Stiffness element matrix Ke 
 
%% Computation of G and H matrices assuming vo in X-direction (t isoparametric coordinate) 
% derivadaFormatrs=[diff(N,t);diff(N,r);diff(N,s)]; 
derivadaForma_t=[diff(N,t);zeros(1,20);zeros(1,20)];          % Only dN/dt (not dN/d or dN/ds) 
derivadaForma_tt=[diff(diff(N,t),t);zeros(1,20);zeros(1,20)]; % Only d^2N/dt^2 
for k=1:length(N); % 20 interpolation functions 
        derivadaForma_x(:,k)=jacTranspuesta\derivadaForma_t(:,k); 
        derivadaForma_xx(:,k)=jacTranspuesta\jacTranspuesta\derivadaForma_tt(:,k); 
end  
 
[matrizN]=matrizN60(N); % Matriz de 3x60    [ux,uy,uz]=matrizN*q(t) 
  
derivadaForma_x=derivadaForma_x(1,:);     % Solo [...  dN_i/dx   ...] 
derivadaForma_xx=derivadaForma_xx(1,:);   % Solo [...  d2N_i/dx2 ...] 
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for j=1:20 
    ind_q=1+3*(j-1); % Indice asociado a q nodales en direccion x (1,4,7, ...) 
    matrizN_der_x(1,ind_q)=derivadaForma_x(j); % d^2uxr(xr,y,z)/dxr dtiempo = matrizN_der_x*qd 
    matrizN_der_xx(1,ind_q)=derivadaForma_xx(j); % d^2 uxr(xr,y,z)/dxr^2 = matrizN_der_xx*q(t) 
end 
matrizN_der_x(3,60) =0; % 3x60 matrix 
matrizN_der_xx(3,60)=0; % 3x60 matrix 
dMelem=rho*matrizN'*matrizN*det(jacTranspuesta(:,:,1));              % dMelem 
dGelem= -2*vo*rho*matrizN'*matrizN_der_x*det(jacTranspuesta(:,:,1)); % dGelem 
dHelem=vo^2*rho*matrizN'*matrizN_der_xx*det(jacTranspuesta(:,:,1));  % dHelem 
 
for i=1:60 
    for j=1:60 
        Me(i,j)=int(int(int(dMelem(i,j),t,-1,1),r,-1,1),s,-1,1); 
        Ge(i,j)=int(int(int(dGelem(i,j),t,-1,1),r,-1,1),s,-1,1); 
        He(i,j)=int(int(int(dHelem(i,j),t,-1,1),r,-1,1),s,-1,1);  
    end 
end 
  

The symbolic expressions of matrices Me, Ke, Ge, and He were saved in individual functions 

with input parameters that can be called by a FE assembly function to assemble the global 

matrices 𝑀, 𝐾, 𝐺, and 𝐻 of any 3-D mesh used for discretizing a finite portion of 

homogeneous soil. The code developed for moving 3-D finite-elements combined with beam 

FE and different vehicle models can be coupled to model a moving vehicle on rails using a 

finite domain.  
 

Figure 6 shows the FE model of a moving load on a beam supported on a soil domain in 

relative coordinates analyzed with the developed program. A moving load at constant speed 

(shown in light green in the left figure) is assumed to be applied on the node with relative 

coordinates (𝑥 = 0, 𝑦 = 0, and 𝑧 = 0 in Figure 6). The FE model consists of 6177 nodes, 

1200 20-node 3-D elastic FEs, and 60 2-node beam FEs.  The beam is depicted in magenta 

and the elastic soil domain in blue. The load is assumed to be moving in the X-direction 

(𝑣𝑜 = 15 𝑚/𝑠), the model parameters assumed for code-testing were Soil.Poisson=0.30; 
Soil.G=200*1000000/9.81/1000;  Soil.E=Soil.G*2*(1+Soil.Poisson); Soil.rho=2.6/9.81;  

Soil.gamma = 2.6 ton/m3,  Soil.rho=gamma/g. Beam.rho=6*Soil.rho, Beam.Poisson=0.25; 
Beam.E=10000000; Beam.G=Beam.E/(2*(1+Beam.Poisson); Beam.A=0.1; Beam.Iz=0.1; 

Beam.Iy=0.1; Beam.J=Beam.Iz+Beam.Iy; Beam.Asy=5/6*Beam.A; Beam.Asz=5/6*Beam.A.  
 

 

 
Figure 6. Left figure: Mesh of soil domain supporting beam with moving load/vehicle. Right figure: 

Stationary deformation for the analyzed case.  
 

The nodes of the mesh have three displacements as degrees of freedom with the exception of 

the nodes of the beam model in contact with the soil mesh that have three displacements and 

three small rotations as degrees of freedom. The total number of dofs of the soil domain 

model assembled is 18531 and the total number of dofs is 18714 (including additional small 

rotations of beam nodes). 
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The stationary deformation computed for the example case is show on the right (amplified to 

make it visible in Figure 6).  

4 CONCLUSIONS AND FURTHER RESEARCH 

The development of software tools for the estimation of response of moving vehicles, 

moving loads or moving masses on elastic homogeneous infinite domains has been presented. 

The use of moving meshes (formulation of displacement fields in relative coordinates) allows 

the construction of versatile models for the estimation of vehicle-induced vibrations with 

different applications requiring a significantly smaller mesh than that of conventional 

stationary finite elements. These tools can be applied for vibration-intensity estimation for 

environmental impact analysis of train or vehicle induced vibrations, including road or rail 

roughness using random vibration analysis. Automation in model generation for vehicles 

consisting in multiple cars (for train applications) moving at constant velocity on elastic rails 

will be approached in the near future. Other lines for future research are i) the feasibility of an 

homogenization strategy of periodic substructures such as sleepers under rails so that the 

proposed formulation can approximate the mechanical behavior moving vehicles on rails 

supported by sleepers and other periodic substructures using a moving mesh formulation, ii) a 

strategy for approximating the response of moving vehicles on non-homogeneous soil 

domains with stochastic elastic properties, and iii) the relevance of incorporating appropriate 

boundary layers in the moving mesh to allow absorbing boundaries. 
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