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Resumen. En este trabajo se estudia un problema 2D de transferencia de calor transitoria de un cuerpo
bicapa embebido en un fluido en movimiento. Se considera un proceso de transferencia completo te-
niendo en cuenta la difusién, la disipacién convectiva, las pérdidas de flujo lateral, la generacion interna
de calor y la resistencia térmica que ofrece la interfaz, en la cual se cumple la continuidad del flujo y
se presenta un salto de temperatura. La situacion de interés se modela mateméticamente, se encuentran
soluciones analiticas explicitas utilizando técnicas de Fourier y se formula un esquema convergente en
diferencias finitas para simular casos particulares. La solucidn es consistente con resultados anteriores.
Se incluye un ejemplo numérico que muestra coherencia entre los resultados obtenidos y la fisica del
problema.

Keywords: Heat transfer, Multilayer materials, Composite materials, Interfacial thermal resistance.

Abstract. This work addresses a two-dimensional transient heat transfer problem in a bilayer body em-
bedded in a moving fluid. A comprehensive transfer process is considered, taking into account diffusion,
convective dissipation, lateral heat losses, internal heat generation, and the thermal resistance at the in-
terface, where heat flux continuity holds and a temperature jump occurs. The situation of interest is
mathematically modeled, explicit analytical solutions are obtained using Fourier techniques, and a con-
vergent finite-difference scheme is formulated to simulate particular cases. The solution is consistent
with previous results. A numerical example is included to demonstrate coherence between the obtained
results and the underlying physics of the problem.
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1. INTRODUCCION

El modelado matematico de problemas de transferencia de calor en materiales multicapa
ha sido muy estudiado recientemente debido a las numerosas aplicaciones en diversos campos
de la ciencia, ingenieria e industria. La variedad de aplicaciones es evidente en los numerosos
articulos encontrados en la literatura en diferentes campos. Por ejemplo: técnicas de limpieza
de lana, contaminacion en medios porosos, estudio de la permeabilidad de la piel, anélisis de
liberacion de farmacos en stents, estudio de emisiones de gases de efecto invernadero, estudio
de la humedad en tejidos compuestos, crecimiento de tumores, conduccion de calor a través de
la piel, andlisis de celdas de ion-litio, microelectrénica, entre otros. Referencias apropiadas a
cada uno de estos problemas se pueden ver en Umbricht et al. (2025)

Un estado del arte relevante y actualizado en la transferencia de materiales multicapa y las
técnicas matemadticas utilizadas se puede ver en De Monte (2000); Jain et al. (2021). Estos
problemas han sido abordados analiticamente por diferentes métodos, entre ellos el método
de imdgenes recursivas (Dias, 2015), el método de separacion de variables (Hickson et al.,
2009; De Monte, 2000; Rubio et al., 2021), la solucién usando funciones integrales (Rodrigo
y Worthy, 2016). También se han utilizado técnicas numéricas, el método de soluciones fun-
damentales (Johansson y Lesnic, 2009), diferencias finitas y elementos finitos (Hickson et al.,
2009; Rubio et al., 2021).

La bibliografia sobre problemas de transporte de materiales multicapa carece de generalidad.
La mayoria de los articulos citados anteriormente consideran solo la difusién, descuidando tér-
minos disipativos y fuentes de la ecuacion parabdlica completa. Ademas, la mayoria de ellos no
consideran la resistencia ofrecida por la interfaz. Como ejemplo, ver Jain et al. (2021), donde
los autores hacen un buen trabajo estudiando un proceso de transferencia de calor en materiales
multicapa pero no incluyen en el anélisis ni la presencia de fuentes externas ni la resistencia tér-
mica de contacto. Otros articulos consideran problemas de transferencia de calor en materiales
multicapa pero solo tienen en cuenta el estado estacionario (Umbricht et al., 2022a,b).

Es necesario analizar la influencia de la fuente externa, los términos disipativos y la resisten-
cia térmica por contacto, ya que los procesos fisicos clave en transferencia calor en materiales
multicapa incluyen la difusion, la adveccion, la generacién o consumo interno de calor y la ge-
neracion de calor debido a fuentes externas. La tasa de generacién interna de calor o consumo a
menudo se considera proporcional a la temperatura local. Algunos procesos modelados de esta
manera son: una reaccioén quimica con cinética de primer orden (Esho et al., 2018), el término
de perfusion de la ecuacion de biocalor (Pennes et al., 1948), y la ecuacion de aletas (Becker y
Herwing, 2013). El término advectivo es comun en varios procesos de transferencia, como en
una bateria de flujo (Skyllas-Kazacos et al., 2011). Por otro lado, el término fuente es til para
modelar diferentes procesos donde se entrega calor al sistema (Kim, 2020).

Este trabajo propone una extension a 2D de Umbricht et al. (2025). Se estudia matemati-
camente la transferencia de calor transitoria de un cuerpo bicapa gobernado por una ecuacion
de Conveccion-Difusion-Reaccion-Fuente (CDRS). Se consideran la difusion, la adveccion, la
generacion o pérdida interna de calor, la generacidn de calor a partir de fuentes externas y la
resistencia térmica por contacto ofrecida por la interfaz. Se obtiene una expresion analitica para
la solucién del problema. Ademads, el enfoque numérico propuesto tiene como objetivo simular
soluciones para estudios de casos especificos utilizando métodos de diferencias finitas.

Copyright © 2025 Asociacion Argentina de Mecénica Computacional


http://www.amcaonline.org.ar

Mecéanica Computacional Vol XLII, pags. 1575-1584 (2025) 1577

2. MODELADO MATEMATICO

Se estudia la transferencia de calor en un cuerpo bicapa bidimensional. Se tiene en cuenta la
ganancia o pérdida de calor dentro de cada capa a una tasa proporcional a la temperatura local y
la adveccion impulsada por un flujo bidimensional de fluido. Ademads, se asume que se genera
calor desde fuentes externas. La longitud del cuerpo bicapa es x,, la interfaz se encuentra en
x = x1 donde x5 > x; y la altura del cuerpo es y = w. La ecuacion de conservacion de energia
que representa un equilibrio entre la difusion, la adveccidn, la ganancia o pérdida interna de
calor, y la generacion de calor a partir de fuentes externas puede escribirse como:

o1,

T (z,y,t) = DT (z,y,t) + sm(z,y,t), (2,y,t) € Qy, (1)

donde, para m = 1,2, Q,, = (Tpm_1,7m) X (0,w) x RT, y D,, es un operador diferencial
parabdlico utilizado previamente en Umbricht y Rubio (2021), definido como

Dy To(z,y,t) == an A (Ty) (2,y,t) — By - V (T) (2, y,t) + v T, 9, 1), (2)

donde , )
0°T,, (x,y,t 0“1y, (x,y,t
A<Tm>($7y7t> = (2y )+ (2?/ )7
ox Jy 3)
Ol (z,y,t) OTn(x,y,t)
T = .

En las ecuaciones (1)-(3), cominmente conocidas como la ecuacion CDRS, los subindices
denotan la primera y segunda capas de material, y las variables x, y y ¢ representan las coorde-
nadas espaciales y temporal, respectivamente. Las funciones 7 (z,y,t) y To(z,y, t), que satis-
facen Ty (z,y,t) € C?(0,21) x C*(0,w) x C(0,4+00) y Ta(xz,y,t) € C*(z1,22) x C*(0,w) x
C1(0, +00), representan los campos de temperatura en la primera y segunda capas, relativos a
la temperatura ambiente en la posicion (z,y) y tiempo ¢.

Los dos primeros términos del lado derecho de la ecuacion (2) representan la transferencia
de calor por difusién y adveccidn, respectivamente, mientras que el tercer término considera
la generacién o pérdida interna de calor proporcional a la temperatura local. El coeficiente «,
denota la difusividad térmica en cada capa, B,, = (5%, 8Y,) representa el vector de velocidad
del flujo, y v, es el coeficiente asociado a la ganancia o pérdida interna de calor. Finalmente,
las funciones diferenciables s, en (1) modelan fuentes externas de calor. Se asume que todas
las propiedades del material son independientes de la temperatura.

El calor se genera mediante fuentes externas y también por mecanismos internos dentro de
cada capa, a una tasa proporcional a la temperatura local. La transferencia de calor ocurre por
difusion y adveccion debido a un flujo de fluido impuesto dirigido de izquierda a derecha y
de abajo hacia arriba. Cada capa tiene sus propias propiedades térmicas, velocidad del flujo y
caracteristicas de generacion de calor.

Se imponen condiciones generales de frontera convectiva a lo largo de todo el contorno del
dominio. Estas condiciones representan un equilibrio entre el intercambio convectivo de calor
con el entorno y la difusion y adveccion internas. Cabe destacar que la adveccion puede sumi-
nistrar energia al cuerpo o extraerla hacia el entorno. Las condiciones de frontera se expresan
de la siguiente manera (Umbricht et al., 2025):
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(0T,
13_;:hAT1+01015fT1» {L‘:O, ye (O7w)7 tERJra
aTQ . x _ +
2 o = —hpTh+ p2 Cy 55 T, T =12, y€(0,w), t€RT,
oT
ma—;:thlerlcl@le, y=0, v€(0,r), t R,
T, “4)
/ﬁa_y = —h1T1+01015?1;T1, Yy=w, rc (O’xl)’ tERJr’
oT.
KQa—;:h2T2+PQC2ﬁgT27 y=0, z € (xl,xg), tER+>
oT:
28—;:—h2T2+0202ﬁgT2a y=w, x€ (r1,22), t ERT,
\

donde k., hu, pm y Cp, Tepresentan, respectivamente, la conductividad térmica, el coeficiente
de transferencia de calor por conveccion, la densidad y el calor especifico a presion constante
para cada capa. También se considera una discontinuidad de temperatura en la interfaz debido
a la resistencia térmica de contacto R, junto con la continuidad del flujo de calor:

oT;
Ty =Ty + R=—, r=umx, y € (0,w), t e RT,
T, O oT
ke S =GB Ty =k 5 = CL BT, o=, y e (Ouw), teRY, O
5?{052:530417 T = T, ye(oaw)a t€R+7

Por dltimo, se imponen dos condiciones iniciales generales:
Tm(x; Y, t) = Tm,O(xa y)> YOS [xm—lvxm] y Y€ [Oa w} , t=0. (6)

3. SOLUCION ANALITICA

El problema de transferencia de calor transitorio a resolver esta definido por las ecuacio-
nes (1)-(6). Para simplificar, las ecuaciones se adimensionalizan introduciendo los siguientes
parametros param = 1,2:

(_ T _ Y o w _ R Qo T oo
"lj:—’ y:—7 ’LU:—7 R:—’ 7':—2t7 em:—’ Q{:—’
To To To To x5 T, Qg
) ZEQ ZEQ K1 To
_ 2 _ 2 _ .
Pem:_ﬁma VUm = — VUm, Sm = 77— Smy R=— Bzm:_hma (7)
(0%)] (0% Tr (6] Ko K9
. T2 . T2
BZA:—hA, BZB:—hB.
\ K9 %]

donde Pe,, = (Pe.,, Pe?)) y Bi,, corresponden, respectivamente, a los nimeros adimensio-
nales de Péclet y Biot, y 7). denota una temperatura de referencia seleccionada. Al aplicar esta
transformacion adimensional a las ecuaciones (1)-(6), se obtiene la siguiente formulacién adi-
mensional del problema:
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(06, -

_:D101+§lv (i‘)gaT)EQb

or

00 _ _

2 =Dy 0, + 59, (7,7,7) € Q,

or

00

__IZBiA*(917 {E:O, gE(O,U_)), T€R+a
ozT

00

__2:BiB*927 j‘:l, ’Z/E(O,TI)), T€R+7
ozx

00

—_1 :Bil,o*el, gj:(), T € (0,1_31>, TER+,
oy

00

8—_1:32‘1@*91’ y=w, T€(0,1,), 7€RY,

Y

00 (8)
—2 = Biyg* 0o, 7=0, z€(Z,1), TR,
Yy

00

_?:BZ.QU_)*027 g:w, fE(fl,l), TERJr,
oy ’

_ 00
02 =01+ R r=1, g€ (0,w), 7€R,
xr

00 00

8—52761+Ua—£, T=71, ye(0,w), TR,
PeY = a Pel, T=1, y€(0,w), 7€R"
61 = 610, ze0,z4], yel0,w], 7=0,
(02 = 02, T € z,1], yel0,w], 7=0,

donde, para m = 1,2; Q,, = (Z_1,Zm) X (0,w) x RT y D,, es el operador diferencial

parabdlico adimensional definido como sigue:

D0, = a AG,, — Pe,, - Vb,, + Uy, 6,,, 9)
y
Pe?  Bi i Pe!  Bi Pe!  Bi
Biy =1+ 24 Big'=Pey — Bip, Bijg" = —1+ " Byt =—1 -,
(0] K (0 K « KR

_ - - - R —
BZ'270* = P@g‘i‘BiQ, Bigﬂ,* = Peg - Big, Y= P€§ — Pegfj, g = R"‘RPG%
(07

(10)
El término advectivo puede eliminarse de la ecuacién (9). Para ello, se utiliza,
O = exp (Xm * (T, 7)) Om, (Z,9,7) € [Tm_1,Tm] X [0,0] x R, (11)
donde 1 )
X1 = -— Pe;y, X2 = 7 Pey, (12)
2a 2

El cambio de variables (11)-(12) se utiliza en (8)-(10), dando lugar al siguiente sistema:
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(00 R _
a—; =aAO +1 0, +35, (7,9,7)€ M,
00 N ~
8—j = A0, + 120, + 5,  (7,5,7) €
00 _
1 = Bi, 0, =0, je (0,w), TR,
ozT
00 _
__QIBiB@% le? gE(O,U_J), T€R+7
ozT
00 _
a__lzBil,O@la g:O, T c (0,f1), T€R+,
Yy
00, -
—— = Biy 4 04, y=w, 7€ (0,7), T€RT,
B 1, 1 Yy ( 1) (13)
00 _
—?:Bilo@Q, QZO, T € (i’l,l), TERJr,
0y
00 _
~=2 = Biy 4 0, j=w, 7€ (T,1), TR,
9y
00
0= ¢ +p—p, r=1, ye(0,w), TR,
00 00
a—;Zn@lJrsoa—;, =12, y€(0,w), 7€RY,
@1:@170, fG[O,fl], ﬂG[O,"J)], TZO,
K92:®270’ fe[fl,l],gé[,w],T:(),
donde
=1 —a ||X1H27 Py =1y — HX2H27 51 =35 exp(—x1-(7,9)),
:9\2 = 52 exXp (_X2 . (.T,g)), B_’LA = BZA* — lei’ BZB = BZB* — X%,
Biyg = Biio* —x!, Biig=Birg" — X!, Bisyy = Bisg* — X}, (14

Biyg = Bisg  — x5 ¢=0¢, p=RE n=&(y+oxi—06x5),
p=E((0—Rx3), 6=1+Rx{, E=exp(3T1(x] —x3)),

(O10 =010 exp(—Xx1-(Z,7)), ©O20 =100 exp(—x2-(Z,7)).

Se examina sistema homogéneo asociado a las ecuaciones (13)-(14). Este sistema se aborda
utilizando el método de separacion de variables. Con ese fin, se asume la existencia de funciones
Jinp € C*0,71), fonp € C*(21,1), ur, € C*(0,w), uz, € C*0,0) Yy gnyp € CH0, +00)
que satisfacen la siguiente relaci(’)n'

O (z,9,7 —Zmenp ) tmp(§) Gnp(7), (Z,4,7) € Q. (15)

n=1 p=1

Al sustituir la expresion (15) en el sistema homogéneo derivado de las ecuaciones (13)—(14),
se obtiene que la componente temporal satisface gn ,(7) = K, exp(—A; , 7), donde A, son
los valores propios temporales correspondientes y K, , denota una secuencia determinada por
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la distribucién inicial de temperatura. Ademds, las funciones espaciales f, ;. ¥ U p, param =
1, 2, cumplen las siguientes condiciones:

(a (ffur + fru) + 1 frug = =X2 frug, (z,9) € (0,71) x (0, w),
é’uz + f2 Ul2’+w2 f2 Uo = —)\2 f2 Ua, (i’,g) - (fl, 1) X (O,ZT)),
f{:BiAflv J_;:O)
fs = Bip fs, T =1,
| = Bi j=0
. o (16)
uy = Biy g u, Yy =w,
ub, = Big g us, y =0,
UIQ - BiQ,u_Ju% g:wu
f2:¢f1+laf{a jzfl? gE(O,w),
fé:ﬁfl—i_@f{a f:'fl? ZjE(O,U_]),
ademas,
-0 o o P
(b:_a H= -, n=-, Y= (17)
q q q q

donde ¢ € R\ {0} se define tal que us(y) = qui(y), Vy € (0,w). El sistema acoplado (16)
se analiza entonces bajo la suposicion de una solucion no trivial, lo que conduce al siguiente
resultado:

Umnp(§) = Am,p coS(€mp §) + B p sin(€mp §), y € [0, w], (18)
Biy Bis
Yy D2p =

donde A, ), = Ay, =1, By, = - P Los parametros €; ,, y €2, representan los
1p 2,p

valores propios espaciales en la direccién y para la primera y segunda capas, respectivamente.
Estos valores son las infinitas soluciones de las siguientes ecuaciones de autovalores:

61,p(3i1,0 - Bil,w)

62,p(Bi2,0 - Bizw)

tan(e;, w) = _,__ tan(ey, W) = L - . (19)
( P ) 6%,]? -+ BZLO BZl,zD ’ ( P ) E%J? + BZZO BZQ}@
Andlogamente, se tiene que:
fm,n,p (’f) = Am,n,p COS(Wm,n,p j) + Bm,n,p Sln<wm,n,p j)) j e [j:m—la fm]’ (20)
Bi
donde A;,,, =1, B, = 4
Winp

sin(w T _ Bi cos(w T
— ( 1,n,p 1) <¢ A —,l_J/CL)Ln’p) ( 1,n,p 1)

cos(wa,n.p 1) W1 np cos(wa,n.p 1)
(21)
, ~ , (- Bi - R
Bs pp =sin(wa 1) {sm(wl,n,p 1) (¢ - 4 uwl,n,p) + cos(winp T1) (qﬁ + 1 Bigy )]
1,n,p
cos(Wopnpy T ) _ B Bi _ _ =
008(Wanp 1) |:Sln(wl,n,p 1) ("7 - @wl,n,p> + cos(Winp T1) ( ‘HPBZA)} :
W2,n,p wl,n,p

(22)
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Los pardmetros wi ,,;, ¥ wan,p representan los valores propios espaciales en la direccion @
para la primera y segunda capas, respectivamente, y se definen a partir de:

2
Winp = Wrp(aps €1 )_\/M_g

P T Y n,p» ) 1,p?
b (23)

Wanp = W2 n,p( n,p) EQ,p \/)\ + 1/J2 627pa

estos valores son las soluciones infinitas de las siguientes ecuaciones de autovalores:
anpBan -B_iBAan

tan(wspp) = (24)

BZBBan+W2npA2n,p

Por tltimo, para resolver el sistema no homogéneo definido por (13)-(14), se emplea el método
de Fourier sobre la solucién del problema homogéneo planteado en (15).

4. SOLUCION NUMERICA

Se propone un enfoque explicito de diferencias finitas de segundo orden hacia adelante en
el tiempo y centrado en las variables espaciales. Para llevar a cabo el ejemplo numérico, se
programa un esquema en Matlab. Se asume que el fluido disipativo es aire a presién normal.
Los coeficientes de transferencia de calor por conveccion h 4, h, hi y ho se determinan segin
Umbricht et al. (2020). Se considera un ejemplo especifico para el que se suponen los siguientes
pardmetros: o = 1m, ;1 = 0,4m, t,, = 10800s = 3h, B; = (0,02m/s,0,02m/s),

By = <O, 02m/s,0,02m/s %>, v = vy = —0,0003 1/s, R = 0,05m. La condicién inicial
&3]
es nula y la fuente de generacién de calor s(z,t) esta dada por:

100 °C

m%ﬂ% —z)y(w — y)t (e — t),
100 °C

To — 1) WEE m2s
o

Sl(xu Y, t) =
(25)

s2(x,y,1) = (x = 21) (22 — 2) y(w — Y)t (toc — ).

Las Figura 1 muestra las distribucion de temperatura en ¢ = 1,5 h para el material bicapa
Pb — Fe. El perfil de temperatura exhibe una forma que refleja estrechamente la del término
fuente, ya que este constituye el principal aporte de calor al sistema.

Las Figuras 2 presenta la evolucidn espacio-temporal de la temperatura en y = 0, 5m para
un material compuesto Pb — F'e. Se observa claramente una discontinuidad de temperatura en
x = 0,4 m, la cual se vuelve mds pronunciada alrededorde t = 1,5 h.

S. CONCLUSIONES

Este articulo presenta un andlisis tedrico de un problema de transferencia de calor bidimen-
sional en dos capas con difusion, adveccion, generacion o pérdida interna de calor linealmente
dependiente de la temperatura en cada capa, y generacion de calor debido a fuentes externas.
Ademds, se considera la resistencia térmica ofrecida por la interfaz entre los materiales. Se
obtiene una expresion analitica para la solucion del problema estudiado. Adicionalmente, se
propone un enfoque de diferencias finitas convergente, que permite simular numéricamente so-
luciones para estudios de casos particulares. Tanto los resultados analiticos como los numéricos
son consistentes con hallazgos previos y con la fisica del problema. El método numérico pro-
puesto actiia como un complemento que no solo respalda los resultados analiticos, sino que
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Figura 1: Distribucién de Temperatura sobre un cuerpo de Pb — Feent = 1.5h.
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Figura 2: Distribucién de Temperatura sobre un cuerpo de Pb — Feeny = 0.5m.

también constituye una base flexible para abordar extensiones del problema, como geometrias
mas complejas, propiedades dependientes de la temperatura o andlisis inversos, en las que la
deduccién de soluciones cerradas no es factible.

En resumen, este estudio ofrece un punto de referencia analitico y un enfoque numérico fiable
para modelar problemas de transferencia de calor multicapa con resistencia interfacial y fuentes
internas. La metodologia puede extenderse a configuraciones de materiales mds complejas o
aplicarse en tareas de andlisis inverso, como la identificacion de parametros. Futuros trabajos
podrian considerar el desarrollo de esquemas computacionales paralelos o la integracion de
propiedades de materiales dependientes de la temperatura para una mayor fidelidad fisica.
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