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Resumen. En este trabajo se estudia un problema 2D de transferencia de calor transitoria de un cuerpo

bicapa embebido en un fluido en movimiento. Se considera un proceso de transferencia completo te-

niendo en cuenta la difusión, la disipación convectiva, las pérdidas de flujo lateral, la generación interna

de calor y la resistencia térmica que ofrece la interfaz, en la cual se cumple la continuidad del flujo y

se presenta un salto de temperatura. La situación de interés se modela matemáticamente, se encuentran

soluciones analíticas explícitas utilizando técnicas de Fourier y se formula un esquema convergente en

diferencias finitas para simular casos particulares. La solución es consistente con resultados anteriores.

Se incluye un ejemplo numérico que muestra coherencia entre los resultados obtenidos y la física del

problema.

Keywords: Heat transfer, Multilayer materials, Composite materials, Interfacial thermal resistance.

Abstract. This work addresses a two-dimensional transient heat transfer problem in a bilayer body em-

bedded in a moving fluid. A comprehensive transfer process is considered, taking into account diffusion,

convective dissipation, lateral heat losses, internal heat generation, and the thermal resistance at the in-

terface, where heat flux continuity holds and a temperature jump occurs. The situation of interest is

mathematically modeled, explicit analytical solutions are obtained using Fourier techniques, and a con-

vergent finite-difference scheme is formulated to simulate particular cases. The solution is consistent

with previous results. A numerical example is included to demonstrate coherence between the obtained

results and the underlying physics of the problem.
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1. INTRODUCCIÓN

El modelado matemático de problemas de transferencia de calor en materiales multicapa

ha sido muy estudiado recientemente debido a las numerosas aplicaciones en diversos campos

de la ciencia, ingeniería e industria. La variedad de aplicaciones es evidente en los numerosos

artículos encontrados en la literatura en diferentes campos. Por ejemplo: técnicas de limpieza

de lana, contaminación en medios porosos, estudio de la permeabilidad de la piel, análisis de

liberación de fármacos en stents, estudio de emisiones de gases de efecto invernadero, estudio

de la humedad en tejidos compuestos, crecimiento de tumores, conducción de calor a través de

la piel, análisis de celdas de ion-litio, microelectrónica, entre otros. Referencias apropiadas a

cada uno de estos problemas se pueden ver en Umbricht et al. (2025)

Un estado del arte relevante y actualizado en la transferencia de materiales multicapa y las

técnicas matemáticas utilizadas se puede ver en De Monte (2000); Jain et al. (2021). Estos

problemas han sido abordados analíticamente por diferentes métodos, entre ellos el método

de imágenes recursivas (Dias, 2015), el método de separación de variables (Hickson et al.,

2009; De Monte, 2000; Rubio et al., 2021), la solución usando funciones integrales (Rodrigo

y Worthy, 2016). También se han utilizado técnicas numéricas, el método de soluciones fun-

damentales (Johansson y Lesnic, 2009), diferencias finitas y elementos finitos (Hickson et al.,

2009; Rubio et al., 2021).

La bibliografía sobre problemas de transporte de materiales multicapa carece de generalidad.

La mayoría de los artículos citados anteriormente consideran solo la difusión, descuidando tér-

minos disipativos y fuentes de la ecuación parabólica completa. Además, la mayoría de ellos no

consideran la resistencia ofrecida por la interfaz. Como ejemplo, ver Jain et al. (2021), donde

los autores hacen un buen trabajo estudiando un proceso de transferencia de calor en materiales

multicapa pero no incluyen en el análisis ni la presencia de fuentes externas ni la resistencia tér-

mica de contacto. Otros artículos consideran problemas de transferencia de calor en materiales

multicapa pero solo tienen en cuenta el estado estacionario (Umbricht et al., 2022a,b).

Es necesario analizar la influencia de la fuente externa, los términos disipativos y la resisten-

cia térmica por contacto, ya que los procesos físicos clave en transferencia calor en materiales

multicapa incluyen la difusión, la advección, la generación o consumo interno de calor y la ge-

neración de calor debido a fuentes externas. La tasa de generación interna de calor o consumo a

menudo se considera proporcional a la temperatura local. Algunos procesos modelados de esta

manera son: una reacción química con cinética de primer orden (Esho et al., 2018), el término

de perfusión de la ecuación de biocalor (Pennes et al., 1948), y la ecuación de aletas (Becker y

Herwing, 2013). El término advectivo es común en varios procesos de transferencia, como en

una batería de flujo (Skyllas-Kazacos et al., 2011). Por otro lado, el término fuente es útil para

modelar diferentes procesos donde se entrega calor al sistema (Kim, 2020).

Este trabajo propone una extensión a 2D de Umbricht et al. (2025). Se estudia matemáti-

camente la transferencia de calor transitoria de un cuerpo bicapa gobernado por una ecuación

de Convección-Difusión-Reacción-Fuente (CDRS). Se consideran la difusión, la advección, la

generación o pérdida interna de calor, la generación de calor a partir de fuentes externas y la

resistencia térmica por contacto ofrecida por la interfaz. Se obtiene una expresión analítica para

la solución del problema. Además, el enfoque numérico propuesto tiene como objetivo simular

soluciones para estudios de casos específicos utilizando métodos de diferencias finitas.
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2. MODELADO MATEMÁTICO

Se estudia la transferencia de calor en un cuerpo bicapa bidimensional. Se tiene en cuenta la

ganancia o pérdida de calor dentro de cada capa a una tasa proporcional a la temperatura local y

la advección impulsada por un flujo bidimensional de fluido. Además, se asume que se genera

calor desde fuentes externas. La longitud del cuerpo bicapa es x2, la interfaz se encuentra en

x = x1 donde x2 > x1 y la altura del cuerpo es y = w. La ecuación de conservación de energía

que representa un equilibrio entre la difusión, la advección, la ganancia o pérdida interna de

calor, y la generación de calor a partir de fuentes externas puede escribirse como:

∂Tm
∂t

(x, y, t) = DmTm(x, y, t) + sm(x, y, t), (x, y, t) ∈ Ωm, (1)

donde, para m = 1, 2, Ωm = (xm−1, xm) × (0, w) × R
+, y Dm es un operador diferencial

parabólico utilizado previamente en Umbricht y Rubio (2021), definido como

DmTm(x, y, t) := αm ∆(Tm) (x, y, t)− βm · ∇ (Tm) (x, y, t) + νm Tm(x, y, t), (2)

donde 



∆(Tm) (x, y, t) :=
∂2Tm(x, y, t)

∂x2
+
∂2Tm(x, y, t)

∂y2
,

∇ (Tm) (x, y, t) :=

(
∂Tm(x, y, t)

∂x
,
∂Tm(x, y, t)

∂y

)
.

(3)

En las ecuaciones (1)-(3), comúnmente conocidas como la ecuación CDRS, los subíndices

denotan la primera y segunda capas de material, y las variables x, y y t representan las coorde-

nadas espaciales y temporal, respectivamente. Las funciones T1(x, y, t) y T2(x, y, t), que satis-

facen T1(x, y, t) ∈ C2(0, x1)×C2(0, w)×C1(0,+∞) y T2(x, y, t) ∈ C2(x1, x2)×C2(0, w)×
C1(0,+∞), representan los campos de temperatura en la primera y segunda capas, relativos a

la temperatura ambiente en la posición (x, y) y tiempo t.
Los dos primeros términos del lado derecho de la ecuación (2) representan la transferencia

de calor por difusión y advección, respectivamente, mientras que el tercer término considera

la generación o pérdida interna de calor proporcional a la temperatura local. El coeficiente αm

denota la difusividad térmica en cada capa, βm = (βx
m, β

y
m) representa el vector de velocidad

del flujo, y νm es el coeficiente asociado a la ganancia o pérdida interna de calor. Finalmente,

las funciones diferenciables sm en (1) modelan fuentes externas de calor. Se asume que todas

las propiedades del material son independientes de la temperatura.

El calor se genera mediante fuentes externas y también por mecanismos internos dentro de

cada capa, a una tasa proporcional a la temperatura local. La transferencia de calor ocurre por

difusión y advección debido a un flujo de fluido impuesto dirigido de izquierda a derecha y

de abajo hacia arriba. Cada capa tiene sus propias propiedades térmicas, velocidad del flujo y

características de generación de calor.

Se imponen condiciones generales de frontera convectiva a lo largo de todo el contorno del

dominio. Estas condiciones representan un equilibrio entre el intercambio convectivo de calor

con el entorno y la difusión y advección internas. Cabe destacar que la advección puede sumi-

nistrar energía al cuerpo o extraerla hacia el entorno. Las condiciones de frontera se expresan

de la siguiente manera (Umbricht et al., 2025):
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



κ1
∂T1
∂x

= hA T1 + ρ1C1 β
x
1 T1, x = 0, y ∈ (0, w), t ∈ R

+,

κ2
∂T2
∂x

= −hB T2 + ρ2C2 β
x
2 T2, x = x2, y ∈ (0, w), t ∈ R

+,

κ1
∂T1
∂y

= h1 T1 + ρ1C1 β
y
1 T1, y = 0, x ∈ (0, x1), t ∈ R

+,

κ1
∂T1
∂y

= −h1 T1 + ρ1C1 β
y
1 T1, y = w, x ∈ (0, x1), t ∈ R

+,

κ2
∂T2
∂y

= h2 T2 + ρ2C2 β
y
2 T2, y = 0, x ∈ (x1, x2), t ∈ R

+,

κ2
∂T2
∂y

= −h2 T2 + ρ2C2 β
y
2 T2, y = w, x ∈ (x1, x2), t ∈ R

+,

(4)

donde κm, hm, ρm y Cm representan, respectivamente, la conductividad térmica, el coeficiente

de transferencia de calor por convección, la densidad y el calor específico a presión constante

para cada capa. También se considera una discontinuidad de temperatura en la interfaz debido

a la resistencia térmica de contacto R, junto con la continuidad del flujo de calor:





T2 = T1 +R
∂T1
∂x

, x = x1, y ∈ (0, w), t ∈ R
+,

κ2
∂T2
∂x

− ρ2C2 β
x
2 T2 = κ1

∂T1
∂x

− ρ1C1 β
x
1 T1, x = x1, y ∈ (0, w), t ∈ R

+,

βy
1 α2 = βy

2 α1, x = x1, y ∈ (0, w), t ∈ R
+,

(5)

Por último, se imponen dos condiciones iniciales generales:

Tm(x, y, t) = Tm,0(x, y), x ∈ [xm−1, xm] , y ∈ [0, w] , t = 0. (6)

3. SOLUCIÓN ANALÍTICA

El problema de transferencia de calor transitorio a resolver está definido por las ecuacio-

nes (1)-(6). Para simplificar, las ecuaciones se adimensionalizan introduciendo los siguientes

parámetros para m = 1, 2:





x̄ =
x

x2
, ȳ =

y

x2
, w̄ =

w

x2
, R̄ =

R

x2
, τ =

α2

x22
t, θm =

Tm
Tr
, ᾱ =

α1

α2

,

Pem =
x2
α2

βm, ν̄m =
x22
α2

νm, s̄m =
x22
Tr α2

sm, κ̄ =
κ1
κ2
, Bim =

x2
κ2
hm,

BiA =
x2
κ2
hA, BiB =

x2
κ2
hB.

(7)

donde Pem = (Pex̄m, P e
ȳ
m) y Bim corresponden, respectivamente, a los números adimensio-

nales de Péclet y Biot, y Tr denota una temperatura de referencia seleccionada. Al aplicar esta

transformación adimensional a las ecuaciones (1)–(6), se obtiene la siguiente formulación adi-

mensional del problema:
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



∂θ1
∂τ

= D̄1 θ1 + s̄1, (x̄, ȳ, τ) ∈ Ω̄1,

∂θ2
∂τ

= D̄2 θ2 + s̄2, (x̄, ȳ, τ) ∈ Ω̄2,

∂θ1
∂x̄

= BiA
∗ θ1, x̄ = 0, ȳ ∈ (0, w̄), τ ∈ R

+,

∂θ2
∂x̄

= BiB
∗ θ2, x̄ = 1, ȳ ∈ (0, w̄), τ ∈ R

+,

∂θ1
∂ȳ

= Bi1,0
∗ θ1, ȳ = 0, x̄ ∈ (0, x̄1), τ ∈ R

+,

∂θ1
∂ȳ

= Bi1,w̄
∗ θ1, ȳ = w̄, x̄ ∈ (0, x̄1), τ ∈ R

+,

∂θ2
∂ȳ

= Bi2,0
∗ θ2, ȳ = 0, x̄ ∈ (x̄1, 1), τ ∈ R

+,

∂θ2
∂ȳ

= Bi2,w̄
∗ θ2, ȳ = w̄, x̄ ∈ (x̄1, 1), τ ∈ R

+,

θ2 = θ1 + R̄
∂θ1
∂x̄

, x̄ = x̄1, ȳ ∈ (0, w̄), τ ∈ R
+,

∂θ2
∂x̄

= γ θ1 + σ
∂θ1
∂x̄

, x̄ = x̄1, ȳ ∈ (0, w̄), τ ∈ R
+,

P eȳ1 = ᾱ Peȳ2, x̄ = x̄1, ȳ ∈ (0, w̄), τ ∈ R
+,

θ1 = θ1,0, x̄ ∈ [0, x̄1] , ȳ ∈ [0, w̄] , τ = 0,

θ2 = θ2,0, x̄ ∈ [x̄1, 1] , ȳ ∈ [0, w̄] , τ = 0,

(8)

donde, para m = 1, 2; Ω̄m = (x̄m−1, x̄m) × (0, w̄) × R
+ y D̄m es el operador diferencial

parabólico adimensional definido como sigue:

D̄mθm = ᾱ∆θm − Pem · ∇θm + ν̄m θm, (9)

y





BiA
∗ =

Pex̄1
ᾱ

+
BiA
κ̄
, BiB

∗ = Pex̄2 − BiB, Bi1,0
∗ =

Peȳ1
ᾱ

+
Bi1
κ̄
, Bi1,w̄

∗ =
Peȳ1
ᾱ

−
Bi1
κ̄
,

Bi2,0
∗ = Peȳ2 +Bi2, Bi2,w̄

∗ = Peȳ2 − Bi2, γ = Pex̄2 − Pex̄1
κ̄

ᾱ
, σ = κ̄+ R̄ Pex̄2 .

(10)

El término advectivo puede eliminarse de la ecuación (9). Para ello, se utiliza,

θm = exp (χm · (x̄, ȳ)) Θm, (x̄, ȳ, τ) ∈ [x̄m−1, x̄m]× [0, w̄]× R
+, (11)

donde

χ1 =
1

2 ᾱ
Pe1, χ2 =

1

2
Pe2, (12)

El cambio de variables (11)-(12) se utiliza en (8)-(10), dando lugar al siguiente sistema:
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



∂Θ1

∂τ
= ᾱ∆Θ1 + ψ1 Θ1 + ŝ1, (x̄, ȳ, τ) ∈ Ω̄1,

∂Θ2

∂τ
= ∆Θ2 + ψ2 Θ2 + ŝ2, (x̄, ȳ, τ) ∈ Ω̄2,

∂Θ1

∂x̄
= B̄iA Θ1, x̄ = 0, ȳ ∈ (0, w̄), τ ∈ R

+,

∂Θ2

∂x̄
= B̄iB Θ2, x̄ = 1, ȳ ∈ (0, w̄), τ ∈ R

+,

∂Θ1

∂ȳ
= B̄i1,0 Θ1, ȳ = 0, x̄ ∈ (0, x̄1), τ ∈ R

+,

∂Θ1

∂ȳ
= B̄i1,w̄ Θ1, ȳ = w̄, x̄ ∈ (0, x̄1), τ ∈ R

+,

∂Θ2

∂ȳ
= B̄i2,0 Θ2, ȳ = 0, x̄ ∈ (x̄1, 1), τ ∈ R

+,

∂Θ2

∂ȳ
= B̄i2,w̄ Θ2, ȳ = w̄, x̄ ∈ (x̄1, 1), τ ∈ R

+,

Θ2 = ϕΘ1 + µ
∂Θ1

∂x̄
, x̄ = x̄1, y ∈ (0, w̄), τ ∈ R

+,

∂Θ2

∂x̄
= ηΘ1 + φ

∂Θ1

∂x̄
, x̄ = x̄1, y ∈ (0, w̄), τ ∈ R

+,

Θ1 = Θ1,0, x̄ ∈ [0, x̄1] , ȳ ∈ [0, w̄] , τ = 0,

Θ2 = Θ2,0, x̄ ∈ [x̄1, 1] , ȳ ∈ [0, w̄] , τ = 0,

(13)

donde





ψ1 = ν̄1 − ᾱ ∥χ1∥
2 , ψ2 = ν̄2 − ∥χ2∥

2 , ŝ1 = s̄1 exp (−χ1 · (x̄, ȳ)) ,

ŝ2 = s̄2 exp (−χ2 · (x̄, ȳ)) , B̄iA = BiA
∗ − χx̄

1 , B̄iB = BiB
∗ − χx̄

2 ,

B̄i1,0 = Bi1,0
∗ − χȳ

1, B̄i1,w̄ = Bi1,w̄
∗ − χȳ

1, B̄i2,0 = Bi2,0
∗ − χȳ

2,

B̄i2,w̄ = Bi2,w̄
∗ − χȳ

2 ϕ = δ ξ, µ = R̄ ξ, η = ξ (γ + σ χx̄
1 − δ χx̄

2) ,

φ = ξ
(
σ − R̄ χx̄

2

)
, δ = 1 + R̄ χx̄

1 , ξ = exp
(
1

2
x̄1(χ

x̄
1 − χx̄

2)
)
,

Θ1,0 = θ1,0 exp (−χ1 · (x̄, ȳ)) , Θ2,0 = θ2,0 exp (−χ2 · (x̄, ȳ)) .

(14)

Se examina sistema homogéneo asociado a las ecuaciones (13)-(14). Este sistema se aborda

utilizando el método de separación de variables. Con ese fin, se asume la existencia de funciones

f1,n,p ∈ C2(0, x̄1), f2,n,p ∈ C2(x̄1, 1), u1,p ∈ C2(0, w̄), u2,p ∈ C2(0, w̄) y gn,p ∈ C1(0,+∞)
que satisfacen la siguiente relación:

ΘH
m(x̄, ȳ, τ) =

∞∑

n=1

∞∑

p=1

fm,n,p(x̄) um,p(ȳ) gn,p(τ), (x̄, ȳ, τ) ∈ Ω̄m. (15)

Al sustituir la expresión (15) en el sistema homogéneo derivado de las ecuaciones (13)–(14),

se obtiene que la componente temporal satisface gn,p(τ) = Kn,p exp(−λ2n,p τ), donde λn,p son

los valores propios temporales correspondientes y Kn,p denota una secuencia determinada por
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la distribución inicial de temperatura. Además, las funciones espaciales fm,n,p y um,p, para m =
1, 2, cumplen las siguientes condiciones:





ᾱ (f ′′

1 u1 + f1 u
′′

1) + ψ1 f1 u1 = −λ2 f1 u1, (x̄, ȳ) ∈ (0, x̄1)× (0, w̄),

f ′′

2 u2 + f2 u
′′

2 + ψ2 f2 u2 = −λ2 f2 u2, (x̄, ȳ) ∈ (x̄1, 1)× (0, w̄),

f ′

1 = B̄iA f1, x̄ = 0,

f ′

2 = B̄iB f2, x̄ = 1,

u′1 = B̄i1,0 u1, ȳ = 0,

u′1 = B̄i1,w̄ u1, ȳ = w̄,

u′2 = B̄i2,0 u2, ȳ = 0,

u′2 = B̄i2,w̄ u2, ȳ = w̄,

f2 = ϕ̄ f1 + µ̄ f ′

1, x̄ = x̄1, ȳ ∈ (0, w̄),

f ′

2 = η̄ f1 + φ̄ f ′

1, x̄ = x̄1, ȳ ∈ (0, w̄),

(16)

además,

ϕ̄ =
ϕ

q
, µ̄ =

µ

q
, η̄ =

η

q
, φ̄ =

φ

q
, (17)

donde q ∈ R \ {0} se define tal que u2(ȳ) = q u1(ȳ), ∀ ȳ ∈ (0, w̄). El sistema acoplado (16)

se analiza entonces bajo la suposición de una solución no trivial, lo que conduce al siguiente

resultado:

um,p(ȳ) = Am,p cos(ϵm,p ȳ) + Bm,p sin(ϵm,p ȳ), ȳ ∈ [0, w̄], (18)

donde A1,p = A2,p = 1, B1,p =
B̄i1,0
ϵ1,p

y B2,p =
B̄i2,0
ϵ2,p

. Los parámetros ϵ1,p y ϵ2,p representan los

valores propios espaciales en la dirección y para la primera y segunda capas, respectivamente.

Estos valores son las infinitas soluciones de las siguientes ecuaciones de autovalores:

tan(ϵ1,p w̄) =
ϵ1,p(B̄i1,0 − B̄i1,w̄)

ϵ21,p + B̄i1,0 B̄i1,w̄
, tan(ϵ2,p w̄) =

ϵ2,p(B̄i2,0 − B̄i2,w̄)

ϵ22,p + B̄i2,0 B̄i2,w̄
. (19)

Análogamente, se tiene que:

fm,n,p(x̄) = Am,n,p cos(ωm,n,p x̄) + Bm,n,p sin(ωm,n,p x̄), x̄ ∈ [x̄m−1, x̄m], (20)

donde A1,n,p = 1, B1,n,p =
B̄iA
ω1,n,p

y

A2,n,p =
sin(ω1,n,p x̄1)

cos(ω2,n,p x̄1)

(
ϕ̄
B̄iA
ω1,n,p

− µ̄ ω1,n,p

)
+

cos(ω1,n,p x̄1)

cos(ω2,n,p x̄1)

(
ϕ̄+ µ̄ B̄iA

)
− tan(ω2,n,p x̄1)B2,n,p

(21)

B2,n,p =sin(ω2,n,p x̄1)

[
sin(ω1,n,p x̄1)

(
ϕ̄
B̄iA
ω1,n,p

− µ̄ ω1,n,p

)
+ cos(ω1,n,p x̄1)

(
ϕ̄+ µ̄ B̄iA

)]

+
cos(ω2,n,p x̄1)

ω2,n,p

[
sin(ω1,n,p x̄1)

(
η̄
B̄iA
ω1,n,p

− φ̄ ω1,n,p

)
+ cos(ω1,n,p x̄1)

(
η̄ + φ̄ B̄iA

)]
.

(22)
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Los parámetros ω1,n,p y ω2,n,p representan los valores propios espaciales en la dirección x
para la primera y segunda capas, respectivamente, y se definen a partir de:




ω1,n,p = ω1,n,p(λn,p, ϵ1,p) =

√
λ2n,p + ψ1

ᾱ
− ϵ21,p,

ω2,n,p = ω2,n,p(λn,p, ϵ2,p) =
√
λ2n,p + ψ2 − ϵ22,p,

(23)

estos valores son las soluciones infinitas de las siguientes ecuaciones de autovalores:

tan(ω2,n,p) =
ω2,n,pB2,n,p − B̄iB A2,n,p

B̄iB B2,n,p + ω2,n,pA2,n,p

. (24)

Por último, para resolver el sistema no homogéneo definido por (13)-(14), se emplea el método

de Fourier sobre la solución del problema homogéneo planteado en (15).

4. SOLUCIÓN NUMÉRICA

Se propone un enfoque explícito de diferencias finitas de segundo orden hacia adelante en

el tiempo y centrado en las variables espaciales. Para llevar a cabo el ejemplo numérico, se

programa un esquema en Matlab. Se asume que el fluido disipativo es aire a presión normal.

Los coeficientes de transferencia de calor por convección hA, hB, h1 y h2 se determinan según

Umbricht et al. (2020). Se considera un ejemplo específico para el que se suponen los siguientes

parámetros: x2 = 1m, x1 = 0, 4m, t∞ = 10800 s = 3h, β1 = (0, 02m/s, 0, 02m/s),

β2 =

(
0, 02m/s, 0, 02m/s

α2

α1

)
, ν1 = ν2 = −0, 0003 1/s, R = 0, 05m. La condición inicial

es nula y la fuente de generación de calor s(x, t) esta dada por:





s1(x, y, t) =
100

x1w t2∞

◦C

m2 s
x (x1 − x) y(w − y)t (t∞ − t),

s2(x, y, t) =
100

(x2 − x1)w t2∞

◦C

m2 s
(x− x1) (x2 − x) y(w − y)t (t∞ − t).

(25)

Las Figura 1 muestra las distribución de temperatura en t = 1, 5h para el material bicapa

Pb − Fe. El perfil de temperatura exhibe una forma que refleja estrechamente la del término

fuente, ya que este constituye el principal aporte de calor al sistema.

Las Figuras 2 presenta la evolución espacio-temporal de la temperatura en y = 0, 5m para

un material compuesto Pb − Fe. Se observa claramente una discontinuidad de temperatura en

x = 0, 4m, la cual se vuelve más pronunciada alrededor de t = 1, 5h.

5. CONCLUSIONES

Este artículo presenta un análisis teórico de un problema de transferencia de calor bidimen-

sional en dos capas con difusión, advección, generación o pérdida interna de calor linealmente

dependiente de la temperatura en cada capa, y generación de calor debido a fuentes externas.

Además, se considera la resistencia térmica ofrecida por la interfaz entre los materiales. Se

obtiene una expresión analítica para la solución del problema estudiado. Adicionalmente, se

propone un enfoque de diferencias finitas convergente, que permite simular numéricamente so-

luciones para estudios de casos particulares. Tanto los resultados analíticos como los numéricos

son consistentes con hallazgos previos y con la física del problema. El método numérico pro-

puesto actúa como un complemento que no solo respalda los resultados analíticos, sino que
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Figura 1: Distribución de Temperatura sobre un cuerpo de Pb− Fe en t = 1.5h.

Figura 2: Distribución de Temperatura sobre un cuerpo de Pb− Fe en y = 0.5m.

también constituye una base flexible para abordar extensiones del problema, como geometrías

más complejas, propiedades dependientes de la temperatura o análisis inversos, en las que la

deducción de soluciones cerradas no es factible.

En resumen, este estudio ofrece un punto de referencia analítico y un enfoque numérico fiable

para modelar problemas de transferencia de calor multicapa con resistencia interfacial y fuentes

internas. La metodología puede extenderse a configuraciones de materiales más complejas o

aplicarse en tareas de análisis inverso, como la identificación de parámetros. Futuros trabajos

podrían considerar el desarrollo de esquemas computacionales paralelos o la integración de

propiedades de materiales dependientes de la temperatura para una mayor fidelidad física.
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