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Abstract. This work addresses the problem of optimal topological design of three-dimensional struc-

tures composed of plate arrays based on the use of topological derivatives. These structural arrays consist

of planar elements linked at their edges. Their modeling is performed by coupling a membrane model

and a bending-plate model. The geometric and material representation is accomplished using level-set

curves. To minimize a cost function, the topological derivative value is used to guide the evolution of

the level-set curve. A theoretical framework and case studies of academic and industrial applications are

presented.
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1 INTRODUCTION

Shell structures are very common in several engineering sectors including civil, industrial,

nuclear, and marine. In civil engineering, these structures are used in roofs, domes, bridges,

walls and silos. The key factors are economic mass production and lightweight. A thin shell is

stiff against in-plane forces and easily deformed against out-of-plane bending. Such thin shell

structures must be properly designed to avoid large deflections while effectively supporting the

prescribed loads, which is difficult to achieve using only intuitive or empirical methods. For

problems with such challenges, structural optimization can be a powerful method for a wide

range of problems. A simpler approach is to consider such structures as a sequence of folded

plates. For this particular case, the membrane and bending effects are decoupled in the middle

surface that defines the plate.

The mathematical model of folded plates is given by a system of linear equations of elliptic

type. Hence, it can be shown by the standard procedure of the speed method (Sokołowski and

Zolésio, 1992) that the elliptic boundary value problem under consideration is well posed from

the point of view of shape optimization.

In particular, it means that by the elliptic regularity of the weak solutions to the model,

the existence of the shape and material derivatives is ensured. This fact implies the existence

of the shape gradient for the boundary shape functional. Therefore, the classical shape opti-

mization method by boundary variations can be applied to the numerical solution of the shape

optimization problem. We are interested, however, in modern approaches to shape-topological

optimization, i.e., we want to admit a broader family of admissible domains obtained by non-

smooth perturbations of regular domains. In other words, we perform the asymptotic analysis

of solutions to the state equation in the singularly perturbed geometrical domains. The non-

smooth domain perturbations can be analyzed only in the framework of asymptotic analysis

(Novotny and Sokołowski, 2013) because such perturbations cannot be described by bilips-

chitzian mappings of the speed method. The singular perturbations include the insertion of

holes or cavities into the reference domain. It is known (Novotny and Sokołowski, 2013) that

the holes or cavities can be considered as the limit case of inclusions for the limit passage of the

so-called contrast parameters. For numerical solutions to optimum design problems, it is useful

to insert inclusions made of a different material characterized by a contrast parameter for the

elastic property.

The starting point of the numerical procedure for structural optimum design is the numerical

evaluation of the topological derivative. Since the topological derivative formula is obtained at

the continuous level, to use this information to identify local minima or maxima in a numerical

optimization procedure we need the discrete values of the topological derivative. The precision

of the numerical evaluation of topological derivatives should be sufficient for such an identifica-

tion procedure. In the case of minimization problems, the negative part of the level-set function

associated with the topological derivative evaluated in the reference domain is selected. There-

fore, it only needs to look for the local minima of the topological derivative for one isolated

circular inclusion Bε(x̂), for all x̂ ∈ Ω. Let us recall that the topological derivative for one

circular inclusion Bε 7→ Jε(Ω) is a function x̂ 7→ T (x̂) defined in Ω such that the following

asymptotic expansion holds for ε → 0,

Jε(Ω) = J(Ω) + f(ε)T (x̂) + o(f(ε)). (1)

The function f(ε), such that f(ε) → 0+ with ε → 0+, can be specified from the asymptotic

analysis concerning the small parameter ε → 0.
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The insertion of one inclusion results in perturbations of the coefficients of the elliptic oper-

ators. For one inclusion, we perform the sensitivity analysis of the perturbed coupled equations

concerning the small parameter ε → 0. Such an analysis gives rise to ε > 0 of the shape gradi-

ent of the specific shape functional ε 7→ Jε(Ω). By the limit transition ε → 0+ the topological

derivative of the functional is obtained as a function of the point x̂ ∈ Ω. This means that for

fixed ε there are known two expansions of the cost ε 7→ j(ε) := Jε(Ω), with respect to the small

parameters δ → 0 and ε → 0+, respectively

• for ε > 0,

j(ε+ δ) = j(ε) + δj′(ε) +O(δ2), (2)

• for ε = 0+,

j(ε) = j(0) + f(ε)T (x̂) + o(f(ε)). (3)

By j′(ε) denotes the classical shape derivative of the cost functional Jε(Ω) for the shape per-

turbations of the boundary of inclusion Bε(x̂). The second formula of asymptotic type is estab-

lished for the radius ε = 0+ of the inclusion. Therefore, we are going to determine the unknown

function

x̂ 7→ T (x̂), (4)

by the method of asymptotic analysis. We recall (Żochowski, 1988) that there is a relation

between the two formulas (2) and (3), namely:

T (x̂) = lim
ε→0+

j′(ε)

f ′(ε)
. (5)

The optimal shell design problem using topological derivative remains open, being a topic of

deep scientific, technological, and industrial interest due to the various areas of engineering in

which it is necessary to apply it. However, many advances have been achieved on the optimal

plate design problem by using topological derivatives. The topological derivatives associated

with thin and thick plate models have been obtained in Amstutz (2010) and Sales et al. (2015)

respectively. Their implementation for the optimal design of mono and multi-material structures

has been carried out in Carvalho et al. (2021) and Romero and Giusti (2020), while in Romero

(2022) they have been used for the design of bi-material thick and thin plate mechanisms.

2 OPTIMIZATION PROBLEM

2.1 Topological derivative

Let us now introduce the optimization problem, given by:

min
χ

J (χ, u, w) = Jm(χ, u) + Jb(χ,w), (6)

where J (χ, u, w) is the shape functional to be minimized, and depends on the characteristic

function χ, the in-plane elastic displacement u and the out-of-plane displacement w. Note that

in the definition of J (χ, u, w) the membrane and bending effects in the structural domain Ω are

uncoupled. For this work, we consider the total potential energy of the system, given by:

Jm(χ, u) = −
1

2

∫

Ω

σχ(u) · ∇
su−

∫

Ω

b̄ · u+

∫

Γt

t̄ · u, and (7)

Jb(χ,w) = −
1

2

∫

Ω

Mχ(w) · ∇∇w −

∫

Ω

ḡ · w −

∫

Γq

q̄w +

∫

Γm

m̄∂nw +
ns∑

i=1

Q̄iw(xi).(8)
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The displacement field u is determined within linear elasticity as: Find u ∈ U such that:
∫

Ω

σχ(u) · ∇
sηu =

∫

Ω

b̄ · ηu +

∫

Γt

t̄ · ηu ∀ηu ∈ Vu (9)

where σχ(u) = Cχ∇
su is the elastic stress tensor, Cχ is the fourth-order elasticity tensor and

∇s is that symmetric part of the gradient operator ∇. For the case of isotropic materials, the

constitutive elastic tensor can be written as:

C =
E

1− ν2
((1− ν)I+ νI ⊗ I), (10)

being I and I the fourth- and second-order identity tensors, respectively, E the Young modulus

and ν the Poisson ratio. The optimization procedure is based on representing the domain in

a bi-material fashion. The topology is identified by the strong material distribution (denoted

as Ωh) and the inclusions of weak material (denoted as Ωs) are used to mimic the holes. The

constitutive properties of these regions are characterized by the elasticity tensor Cχ and the

contrast parameter γ. Based on that, we have

Cχ =

{
C ∀x ∈ Ωh

γC ∀x ∈ Ωs . (11)

In the problem presented in (9), U and Vu are the appropriate set and functional space,

respectively, accounting for the Dirichlet boundary condition and its variations.

The transversal displacement field w is determined within the Kirchhoff plate-bending prob-

lem given by: Find w ∈ W such that:

−

∫

Ω

Mχ(w) · ∇∇ηw =

∫

Ω

ḡηw +

∫

Γq

q̄ηw −

∫

Γm

m̄∂nηw −
ns∑

i=1

Q̄iη(xi). ∀ηw ∈ Vw (12)

where Mχ(w) = −h3

12
Cχ∇∇w is the elastic moment tensor, being h the thickness of the plate.

As before, in the above equation, W and Vw are the appropriate set and functional space, re-

spectively, accounting for the Dirichlet boundary condition and its variations. In problems (9)

and (12) the symbols b̄, t̄, ḡ, q̄, m̄ and Q̄i are used to denotes the set of admissible loads for the

considered structural models, see Campeão et al. (2014).

Since the structural domain is characterized by planes linked in some of its linear edges, the

kinematics of the elastic membrane and plate inside of the domain Ω remain uncoupled. There-

fore, the sensitivity of each problem (membrane and bending) to the topological changes can be

measured separately. Based on this fact, the topological derivative of functional J (χ, u, w) in

(6) can be written as:

T Jχ(x̂) = T Jm(x̂) + T Jb(x̂), (13)

where the topological derivatives of the membrane and bending effects are

T Jm(x̂) = Pmσ(u)(x̂) · ∇
su(x̂), and T Jb(x̂) = PbM(w)(x̂) · ∇∇w(x̂), (14)

being σ(u)(x̂) and M(w)(x̂) the stress and moment tensor evaluated at point x̂. In the same

manner, ∇su(x̂) and ∇∇w(x̂) are the strain and curvature tensor at point x̂. The fourth-order

polarization tensors Pm and Pb in (14) are given by:

Pm =
1

2

1− γ

1 + βmγ

(
(1 + βm))I+

1

2
(α− βm)

1− γ

1 + αγ
I ⊗ I

)
, and (15)

Pb =
1

2

1− γ

1 + βbγ

(
4βb

1− ν
I+ αβb

1 + 3ν

1− ν2

1− γ

1 + αγ
I ⊗ I

)
, (16)
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with α = 1+ν
1−ν

, βm = 3−ν
1+ν

and βb =
1−ν
3+ν

. We refer the readers interested in developing the above

expressions to the work by Novotny and Sokołowski (2013).

2.2 Optimization procedure

By considering the level-set domain representation, the strong (or hard) material is charac-

terized by a function Ψ ∈ L2(Ω) such that

Ωh = {x ∈ Ω,Ψ(x) < 0} , (17)

whereas the weak (or soft) material domain is defined by

Ωs = {x ∈ Ω,Ψ(x) > 0} . (18)

Now, let us consider the topological derivative T Jχ(x̂). According to Amstutz and Andrä

(2006), a sufficient condition of local optimality of problem (6) for the class of perturbations

consisting of circular inclusions is

T Jχ(x) > 0 ∀x ∈ Ω . (19)

To devise a level-set-based algorithm whose aim is to produce a topology that satisfies (19) it is

convenient to define the function

g(x) =

{
−T J h

χ (x) if x ∈ Ωh

T J s
χ (x) if x ∈ Ωs . (20)

With the above definition and (17,18) it can be easily established that the sufficient condition

(19) is satisfied if the following equivalence relation between the functions g and the level-set

Ψ holds

∃ τ > 0 s.t g = τ Ψ , (21)

or, equivalently,

θ := arccos

[
⟨g,Ψ⟩L2(Ω)

∥g∥L2(Ω) ∥Ψ∥L2(Ω)

]
= 0 , (22)

where θ is the angle between the vectors g and Ψ in L2(Ω). Starting from a given level-set

function Ψ0 ∈ L2(Ω) which defines the chosen initial guess for the optimum topology, the

algorithm proposed by Amstutz and Andrä (2006) produces a sequence (Ψi)i∈N of level-set

functions that provides successive approximations to the sufficient condition for optimality (21).

The sequence satisfies

Ψ0 ∈ L2(Ω) ,
Ψi+1 ∈ co(Ψi, gi) ∀i ∈ N ,

(23)

where co(Ψi, gi) is the convex hull of {Ψi, gi}. In the current algorithm the initial guess Ψ0 is

normalized. With S denoting the unit sphere in L2(Ω), the algorithm is explicitly given by

Ψ0 ∈ S ,

Ψi+1 =
1

sin θi

[
sin((1− κi)θi)Ψi + sin(κiθi)

gi

∥gi∥L2(Ω)

]
,

(24)

where κi ∈ [0, 1] is a step size determined by a line search to decrease the value of the cost

functional Jχ. The iterative process is stopped when for some iteration the obtained decrease in

Mecánica Computacional Vol XLI, págs. 861-870 (2024) 865

Copyright © 2024 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Jχ is smaller than a given numerical tolerance. If, at this stage, the optimality condition (21,22)

is not satisfied to the desired degree of accuracy, i.e. if θi+1 > ϵθ, where ϵθ is a pre-specified

convergence tolerance, then a uniform mesh refinement of the structure is carried out and the

procedure is continued.

Based on the above description, the main steps of the algorithm can be summarized as fol-

lows:

1. Choose an initial level-set function by defining the initial guess for the optimal structure

domain.

2. Define the domains Ωh and Ωs according to (17) and (18).

3. Define the constitutive properties in each discrete domain Ωh and Ωs according to (11).

4. Obtain the discretized fields u and w by solving, respectively, the problems (9) and (12)

by using a standard numerical procedure.

5. Compute the discrete topological derivative field (13).

6. Obtain the function g(x) according to (20) by using the discrete values of the topological

derivative and compute the θ angle with (22).

7. Update the level-set function Ψi+1 according to (24) and update the domains Ωh and Ωs

by considering (17) and (18).

8. Check convergence θi+1 ≤ ϵθ. If True: Exit. If False: goto 3.

3 NUMERICAL EXAMPLES

To illustrate the applicability of expression (13) and the optimization procedure presented in

the previous Section, we present two numerical examples. To numerically solve the membrane

and bending state equations (9) and (12), respectively, a standard FEM was used. For the bend-

ing problem the DKT finite element Batoz (1982) was implemented. And for the membrane

problem, the ANDES finite element Felippa and Militello (1992); Felippa (2003) was selected

and implemented. The coupling of the displacements u and w was made in the sides belonging

to two or more planes by considering proper rotations of the global DOF into local ones in the

triangle. The full stiffness matrix, in the triangle element local domain, is represented as diago-

nal by blocks. The local DOF at the nodes in each formulation of finite elements are presented

in Fig. 1. The global DOF in a finite element mesh is shown in Fig. 2. Finally, by considering

a volume constraint in the optimization problem, we can avoid a trivial solution to the problem

(6).

3.1 Example 1. Structural tube optimal design

This example considers the structural optimization of a tube with a square cross-section. The

aspect ratio of the tube is 1 : 1 : 5, thus the length of the tube is 5 times the side of the square.

The four sides are clamped at one end of the tube, and four unitary forces are considered on

the opposite sides. These forces are in the direction of the side (at its midpoint) and aligned to

produce a torsional effect in the tube. The geometry of the tube and the boundary conditions

are shown in Fig. 3, and the obtained result in Fig. 4.
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Figure 1: Finite elements: membrane-ANDES (left) and bending-DKT (right)

Figure 2: Coupling DOF in finite elements mesh

3.2 Example 2. Structural beam optimal design

This example considers the structural optimization of a beam with a square cross-section.

The aspect ratio of the beam geometry is 1 : 1 : 2. The domain was constructed by considering

an array of 19 × 9 × 9 structural plates. All sides of the plates are clamped at one end of the

beam, and one unitary force is considered on the center of the opposite sides. In this example,

we explore the possibility of study a solid domain made by regular arrangements of plates. The

geometry of the domain and the boundary conditions are shown in Fig. 5, and the obtained

result in Fig. 6.

4 CONCLUSIONS

In this work, an optimization procedure for the optimal design of folded plates was proposed.

The shape function considered was the total potential elastic energy of the structural system. For

the structural model, a linear elastic hypothesis was used for the membrane effects, and the thin

plate behavior was considered for the bending effects. The computational optimization problem

resolution was performed by using FEM and by coupling ANDES and DKT finite elements.
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Fixed
Forces

Figure 3: Example 1. Geometry and boundary conditions.

Figure 4: Example 1. Final topology

The topological derivative within the level-set geometrical domain representation was used for

the optimization part of the procedure. Since the domain is composed of an arrangement of

plates, the kinematics of the membrane and bending effects are decoupled inside the domain of

each plate. The coupling comes for the side belonging to two or more plates. We present two

numerical realizations showing the capability of the proposed procedure. The obtained results

were satisfactory. In example 1, the obtained topology reproduces the classical beam design for

global torsional effects. In example 2, the final topology can be considered a discrete version

of classical topological optimization for a full solid 3D domain. The plate arrangements are

optimized to reproduce a cantilever 3D beam. This indicates that the proposed methodology

can be used as a simple prospect for topological optimization of solid domain and shell-like

structures.

Finally, in the QR code of Fig. 5, the initial domain and the optimized topologies can be

viewed in a web app for a better understanding of the results.

ACKNOWLEDGEMENTS

This research was partially supported by CONICET (National Council for Scientific and

Technical Research, Argentina) and PID-UTN (Research and Development Program of the

A. ROMERO, S.M. GIUSTI, J.E. SALOMONE868

Copyright © 2024 Asociación Argentina de Mecánica Computacional

http://www.amcaonline.org.ar


Figure 5: Example 2. Geometry and boundary conditions.

Figure 6: Example 2. Final topology
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