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Resumen. Los datos obtenidos a partir de mediciones experimentales suelen contener una gran canti-

dad de ruido y/o ser de baja resolución, impidiendo muchas veces una buena calibración con las técnicas

computacionales. Las técnicas de aprendizaje automático han demostrado que los enfoques del apren-

dizaje profundo son potencialmente adecuados para mejorar la resolución de imágenes, pero su eficacia

suele estar limitada a la necesidad de grandes volúmenes de datos de alta resolución. Además, las predic-

ciones generadas por estas redes neuronales pueden carecer de la coherencia física necesaria, violando

principios fundamentales como la conservación de masa y cantidad de movimiento. En este sentido, la

incorporación de Redes Neuronales Informadas por Física (PINNs) en el esquema típico de trabajo de

la Fluidodinámica Computacional (CFD) parece ser útil. Dado que las PINNs permiten incorporar leyes

físicas (ecuaciones de gobierno) en los datos disponibles, pueden aprender soluciones que son intrín-

secamente coherentes con la física del problema analizado. En este trabajo, las PINNs se utilizan para

mejorar la resolución de un campo de velocidades provenientes de un conjunto limitado de mediciones

ruidosas y sin la incorporación de datos de alta resolución como referencia.
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Abstract. Data obtained from experimental measurements often contain a large amount of noise and/or

are of low resolution, so that the subsequent calibration of computational techniques can be complex.

With the advent of machine learning techniques, deep learning approaches have been shown to be po-

tentially suitable for improving images resolution, but their effectiveness is often limited by the need for

large volumes of high-resolution reference data. In addition, the predictions generated by these networks

may lack the necessary physical consistency, violating fundamental principles such as conservation of

mass and momentum. In this sense, the incorporation of Physics Informed Neural Networks (PINNs) into

the typical tasks scheme of Computational Fluid Dynamics (CFD) seems to be useful. Since PINNs allow

physical laws (the governing equations) to be incorporated into the available data, it is possible to learn

solutions that are intrinsically consistent with the physics of the problem being analyzed. In this work,

PINNs are used to improve the resolution of fluid-flow data, using a limited set of noisy measurements

and without the incorporation of high-resolution data as a reference.
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