Harnessing HPC to Understand Turbulence: Capturing the Fine-grain Structure of Geophysical Flows
Palabras clave:
Atmospheric dynamics, Turbulent convection, Climate modeling, High-performance computing (HPC), Code development and parallelizationResumen
In the realm of atmospheric dynamics, the emergence of large-scale structures from small-scale turbulent convective motions stands as one of the most striking phenomena in nature. This process, which impacts climate modeling, small-scale collisions of particles and droplets in clouds, and has implications for industrial flows, is difficult to capture in traditional turbulence models. This presentation will delve into insights from single- and multi-phase numerical simulations of unprecedented sizes, resolving atmospheric flows with spatial resolutions down to 30 meters. Turbulence in these simulations develops intricate structures seen in nature, as well as large-scale self-organized patterns. I will also discuss the code development and parallelization methods we use to leverage the power of recent high-performance computing systems. Finally, I will discuss prospects for HPC in Argentina in light of the recent acquisition of a system in the TOP500.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos resúmenes que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.