Adjoint-Based Recovery of Weaknesses, Material Parameters and Forces
DOI:
https://doi.org/10.70567/rmc.v2.ocsid8582Palabras clave:
System Identification, Computational Structural Mechanics, Lifecycle Management, High-Fidelity Digital TwinsResumen
Throughout the life cycle of products, processes or patients parts may weaken (e.g. due to corrosion, radiation) or age (e.g. in humans). It is therefore important to infer the state of systems (products, processes or patients) from measurements and high-fidelity computational models. Recent advances in software environments (set-up times for realistic geometries and material parameters), computational mechanics (commercial, open- source and academic codes) and sensors have made the task of accurately infering the state of a system possible, opening the way to high-fidelity digital twins. The determination of weaknesses, material parameters or forces can be cast as as a high-dimensional optimization problem where on tries to minimize properly weighted differences of measured and computed values (displacements, strains, velocities, accelerations, etc.). The use of adjoints enables the relatively quick determination of the unknowns. The paper will report on the considerable progress that has been made over the last year in the field, in particular extension to nonlinear materials, transient problems, uncertainty quantification, improved optimization techniques, and the effect of thermal fields (multiphysics).
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos resúmenes que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

