Using Genetic Algorithms and Artificial Neural Networks for Reliability Based Optimization of Laminated Composite Structures
Abstract
The design of anisotropic laminated composite structures is very susceptible to changes in loading, angle of fiber orientation and ply thickness. Thus, optimization of such structures, using a reliability index as a constraint, is an important problem to be dealt. This paper addresses the problem of structural optimization of laminated composite materials with reliability constraint using a genetic algorithm and two types of neural networks. The reliability analysis is performed using one of the following methods: FORM, modified FORM (FORM with multiple checkpoints), the Standard or Direct Monte Carlo and Monte Carlo with Importance Sampling. The optimization process is performed using a genetic algorithm. To overcome high computational cost it is used Multilayer Perceptron or Radial Basis Artificial Neural Networks. It is shown, presenting two examples, that this methodology can be used without loss of accuracy and large computational timesavings, even when dealing with structures having geometrically non-linear behavior.
Full Text:
PDFAsociación Argentina de Mecánica Computacional
Güemes 3450
S3000GLN Santa Fe, Argentina
Phone: 54-342-4511594 / 4511595 Int. 1006
Fax: 54-342-4511169
E-mail: amca(at)santafe-conicet.gov.ar
ISSN 2591-3522