A Framework for Data-Driven Simulation of Electrical Circuits Based on Discrete-Continuous Optimization
DOI:
https://doi.org/10.70567/rmc.v2.ocsid8665Palabras clave:
Electrical circuits, Forwards dynamics, Data-driven simulation, Discrete-continuous optimization, Data-driven digital twinsResumen
In this presentation, we introduce a new framework for the data-driven simulation of electrical circuits based on discrete-continuous optimization. For this, we provide a formal derivation of the data-driven discrete forward-dynamics problem and for its recursive solution, we adopt a strategy relying on an alternating direction method. Even when we target capacitive elements and circuits of simple topology, the approach has great potential for its generalization. Finally, we study several examples of increasing complexity and show through their analysis, the very promising features of this novel approach. In particular, we investigate the precision of the resulting numerical method, the ability to deal with nonlinearities hidden by the data, the ability to handle data sets of varying size and the robustness with respect to noisy data. Where the last two, represent key features to establish data-driven digital twins. This presentation is in memoriam of Prof. Gustavo C. Buscaglia [1964-2025], a dear friend and inspiring colleague to Cristian G. Gebhardt.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos resúmenes que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

