Gauss solution on the cluster: system size -> n RAM for matrix A -> r = 8*n^2/1e6 processor number -> z RAM of matrix A on each node -> d = r/z ------------------------------------------------------------------ A on one node: n = 3000 number of unknowns z = 1 processor r = 72 MBytes for whole matrix A d = 72 MBytes of A on each node mpirun -machinefile machi.dat -np 1 gauss3.exe times for array with leading dimension 3000 factor solve total mflops unit ratio 6.760E+02 0.000E+00 6.760E+02 2.665E+01 7.504E-02 1.207E+04 end of test ------------------------------------------------------------------ B on three nodes n = 3000 number of unknowns z = 3 processors r = 72 MBytes for whole matrix A d = 24 MBytes of A on each node mpirun -machinefile machi.dat -np 3 gauss3.exe times for array with leading dimension 3000 factor solve total mflops unit ratio 3.200E+02 1.400E+01 3.340E+02 5.395E+01 3.707E-02 5.964E+03 end of test ------------------------------------------------------------------ C speed_up_{np = 3} = 5.395E+01 / 2.665E+01 = 2.0244 ------------------------------------------------------------------ D corrida con el maximo tamanio del sistema posible en el actual cluster: n = 6500 number of unknowns z = 3 processors r = 338 MBytes for whole matrix A d = 112.67 MBytes of A on each node pghpf -Mautopar -Mmpi -o gauss3.exe gauss3.hpf mpirun -machinefile machi.dat -np 3 gauss3.exe times for array with leading dimension 6500 factor solve total mflops unit ratio 3.152E+03 3.800E+01 3.190E+03 5.742E+01 3.483E-02 5.696E+04 end of test-- CimecUser - 01 Sep 2001