Computational Framework for Modeling and Identifying Angiographic Signatures of Brain Collateral Circulation
DOI:
https://doi.org/10.70567/rmc.v2.ocsid8597Palabras clave:
Computational Hemodynamics, Angiographic Signatures, Brain Circulation, Collateral CirculationResumen
The outcome of ischemic stroke interventions, particularly thrombectomy, is heavily influenced by the degree of collateral circulation in the brain. However, assessing collateralization remains a major clinical challenge due to the complexity and variability of the cerebral vasculature. In this talk, I will present a computational framework for modeling anatomically realistic brain vascular networks, incorporating variability in both the circle of Willis and the pial collateral system. Using virtual patient populations, we perform blood flow and transport simulations to study how structural differences affect collateral flow during large vessel occlusion. We further introduce a method to extract quantitative angiographic signatures from simulated and clinical image sequences, enabling objective assessment of collateralization. This approach bridges anatomy, hemodynamics, and imaging, offering a pathway toward more personalized stroke diagnosis and treatment planning.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos resúmenes que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

