Formulación del Problema Elastodinámico de Segundo Gradiente en Interacción con un Flujo de Defectos

Autores/as

  • Juan Carlos Barreto Universidad Nacional de Formosa, Facultad de Recursos Naturales, Laboratorio de Modelización y Simulación Numérica
  • Mario Alejandro Meza Universidad Nacional de Formosa, Facultad de Recursos Naturales, Laboratorio de Modelización y Simulación Numérica

DOI:

https://doi.org/10.70567/mc.v41i1.1

Palabras clave:

Problema de Cauchy, Elastodinámica de segundo gradiente

Resumen

En el siguiente trabajo se formula el problema de condiciones iniciales y de borde para sistemas elasto-dinámicos dependientes de ciertas longitudes características identificadas como micro escalas, o en general múltiples escalas. Se construye un problema de valores iniciales que, a diferencia del clásico problema de Cauchy, ahora esta ampliado con nuevas condiciones iniciales provenientes de los llamados términos de micro-inercia, es decir, que en la formulación de múltiples escalas no es posible dejar de considerar las correcciones de alto orden de gradientes, las cuales producen condiciones iniciales definidas sobre superficies, caracterizadas por longitudes ls. Utilizando una variación del teorema de la divergencia y del tercer teorema de representación de Green Lagrange, se construyen las soluciones asociadas a la propagación de ondas elásticas en medios micro-estructurados. 

Citas

Aifantis E.C. Update on a class of gradient theories. Mechanics of Materials, 35(3):259-280, 2003. ISSN 0167-6636. https://doi.org/10.1016/S0167-6636(02)00278-8

Altan B.S. y Aifantis E.C. On Some Aspects in the Special Theory of Gradient Elasticity. Journal of the Mechanical Behavior of Materials, 8(3):231-282, 1997. ISSN 2191-0243. https://doi.org/10.1515/JMBM.1997.8.3.231

Askes H., De Domenico D., Xu M., Gitman I.M., Bennett T., y Aifantis E.C. Operator Splits and Multiscale Methods in Computational Dynamics. En A. Berezovski y T. Soomere, editores, AppliedWave Mathematics II, Mathematics of Planet Earth, páginas 239-255. Springer International Publishing, Cham, 2019. ISBN 9783030299514. https://doi.org/10.1007/978-3-030-29951-4_11

Askes H., Metrikine A.V., Pichugin A.V., y Bennett T. Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Philosophical Magazine, 88(28-29):3415-3443, 2008. https://doi.org/10.1080/14786430802524108

Balluffi R.W. Introduction to Elasticity Theory for Crystal Defects. Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511998379

Bloom F. Ill-Posed Problems for the Partial-Integrodifferential Equations of Linear and Nonlinear Viscoelasticity. En Ill-Posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory, Studies in Applied and Numerical Mathematics, páginas 29-100. Society for Industrial and Applied Mathematics, 1981. ISBN 9780898711714. https://doi.org/10.1137/1.9781611970890.ch2

De Domenico D. y Askes H. Computational aspects of a new multi-scale dispersive gradient elasticity model with micro-inertia. International Journal for Numerical Methods in Engineering,109, 2016. https://doi.org/10.1002/nme.5278

dell'Isola F. y Gavrilyuk S., editores. Variational Models and Methods in Solid and Fluid Mechanics. CISM International Centre for Mechanical Sciences. Springer Vienna, 2012.ISBN 978-3-7091-0983-0. https://doi.org/10.1007/978-3-7091-0983-0

Erofeyev V.I. Wave Processes in Solids with Microstructure. Series on Stability, Vibration and Control of Systems, Series A. World Scientific, Singapore, 2003. https://doi.org/10.1142/5157

Ghavanloo E., Fazelzadeh S., y Marotti de Sciarra F. Size-Dependent Continuum Mechanics Approaches: Theory and Applications. Springer Tracts in Mechanical Engineering. Springer International Publishing, 2021. ISBN 978-3-030-63049-2. https://doi.org/10.1007/978-3-030-63050-8

Hörmander L. Fourier integral operators. I. Acta Mathematica, 127(1):79-183, 1971. ISSN1871-2509. https://doi.org/10.1007/BF02392052

Knops R.J. y Payne L.E. Uniqueness Theorems in Linear Elasticity. Springer Tracts in Natural Philosophy. Springer Berlin, Heidelberg, 1971. https://doi.org/10.1007/978-3-642-65101-4

Kunin I.A. Elastic Media with Microstructure II. Three-Dimensional Models. Springer Series in Solid-State Sciences. Springer Berlin, Heidelberg, 1982. https://doi.org/10.1007/978-3-642-81748-9

Lubarda V.A. Dislocation Burgers vector and the Peach-Koehler force: a review. Journal of Materials Research and Technology, 8(1):1550-1565, 2019. ISSN 2238-7854. https://doi.org/10.1016/j.jmrt.2018.08.014

Mindlin R.D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1):51-78, 1964. ISSN 1432-0673. https://doi.org/10.1007/BF00248490

Oleinik O.A., Shamaev A.S., y Yosifian G.A. Mathematical Problems in Elasticity and Homogenization. Elsevier, 1992.

Pham K., Maurel A., y Marigo J.J. Revisiting imperfect interface laws for two-dimensional elastodynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2245):20200519, 2021. https://doi.org/10.1098/rspa.2020.0519

Polizzotto C. A second strain gradient elasticity theory with second velocity gradient inertia - Part II: Dynamic behavior. International Journal of Solids and Structures, 50(24):3766-3777, 2013. ISSN 0020-7683. https://doi.org/10.1016/j.ijsolstr.2013.07.026

Tartar L. The General Theory of Homogenization: A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana. Springer Berlin, Heidelberg, 2009. ISBN 9783642051944. https://doi.org/10.1007/978-3-642-05195-1

Descargas

Publicado

2024-11-08

Número

Sección

Artículos completos del congreso MECOM 2024