Validation of a Numerical Model of a Prestressed Beam
DOI:
https://doi.org/10.70567/mc.v42.ocsid8483Palabras clave:
Historic bridges, beams, LDEMResumen
A hybrid numerical method was utilized by applying the Lattice Discrete Element Method (LDEM) and the Finite Element Method (FEM) in Abaqus/Explicit. The main beam and slab are represented by LDEM so that micromechanical detail of elastic behavior and initiation mechanisms of fracture can be described. Supports and crossbeams, are modeled with FEM because experimental observation does not reveal any damage; hence, modeling with FEM at these locations ensures computational economy without compromising representativity. Models for dynamic analysis have been reduced to a full beam, half-beam, and quarter-beam model by mirror operations such that the symmetries are preserved. Natural frequencies and the corresponding mode shapes are obtained numerically have been compared with their experimentally obtained counterparts. Comparisons with the experiment showed good correlation of the natural frequencies and vibration modes, hence validating the methodology adopted for this stage of elastic evaluation as well as presenting a front for potential use in future applications concerning crack analysis and propagation of failure, and three-point and four point static bending tests.
Citas
Bayat, E., et al. (2022). Vibration serviceability assessment of a historic suspension footbridge. Buildings, 12(6), 732. https://doi.org/10.3390/buildings12060732
Bayat, E., Tubino, F. (2022). Experimental and numerical characterization of the dynamic behaviour of a historic suspension footbridge. In: Experimental Vibration Analysis for Civil Engineering Structures: Select Proceedings of the EVACES 2021. Cham: Springer International Publishing, pp. 137-148. https://doi.org/10.1007/978-3-030-93236-7_13
Kosteski, L. E., Riera, J. D., Iturrioz, I. (2010a). Consideration of size effects and stress localization in response determinations using the DEM. In: Cilamce-Mecom 2010, Buenos Aires. Mecánica Computacional, XXIX, pp. 2785-2801. Santa Fe, Argentina: Asociación Argentina de Mecánica Computacional.
Kosteski, L. E., Barrios D'Ambra, R., Iturrioz, I. (2012). Crack propagation in elastic solids using the truss-like discrete element method. International Journal of Fracture, 174, 139-161.https://doi.org/10.1007/s10704-012-9684-4
Kosteski, L. E., Iturrioz, I., Batista, R. G., Cisilino, A. P. (2011a). The truss-like discrete element method in fracture and damage mechanics. Engineering Computations, 28, 765-787.https://doi.org/10.1108/02644401111154664
Kosteski, L. E., et al. (2024). Fractal scale effect in quasi-brittle materials using a version of the discrete element method. Fractal and Fractional, 8(12), 678.https://doi.org/10.3390/fractalfract8120678
Nayfeh, A. H., Hefzy, M. S. (1978). Continuum modeling of three-dimensional truss-like space structures. AIAA Journal, 16(8), 779-787.https://doi.org/10.2514/3.7581
Nicoletti, V., et al. (2023). Experimental tests and numerical analyses for the dynamic characterization of a steel and wooden cable-stayed footbridge. Infrastructures, 8(6), 100.https://doi.org/10.3390/infrastructures8060100
Pantò, B., et al. (2024). Advanced calibration of a 3D masonry arch bridge model using nondestructive testing and numerical optimisation. Construction and Building Materials, 438, 137131.https://doi.org/10.1016/j.conbuildmat.2024.137131
Riera, J. D., Iturrioz, I. (1998). Discrete elements model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading. Nuclear Engineering and Design, 179(2), 135-144. DOI: 10.1016/S0029-5493(97)00270-7.https://doi.org/10.1016/S0029-5493(97)00270-7
Sabia, D., et al. (2022). Experimental evaluation of the effect of controlled damages on the dynamic response of PC bridge beams. In: Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability. CRC Press, pp. 1783-1789.https://doi.org/10.1201/9781003322641-221
Sabia, D., et al. (2023). Dynamic response of PC bridge beams under different damages. In: Life-Cycle of Structures and Infrastructure Systems. CRC Press, pp. 2093-2100.https://doi.org/10.1201/9781003323020-256
Sabia, D., et al. (2024). Dynamic response of damaged precast bridge girders. In: Bridge Maintenance, Safety, Management, Digitalization and Sustainability. CRC Press, pp. 3493- 3500.https://doi.org/10.1201/9781003483755-413
Savino, P. (2023). Structural assessment of 50-year-old prestressed concrete bridge girders.
Yang, Y., et al. (2019). Quasi-brittle fracture simulation by using discretized virtual internal bond with a trilinear damage potential. Theoretical and Applied Fracture Mechanics, 104, 102343.https://doi.org/10.1016/j.tafmec.2019.102343
Zanichelli, A., et al. (2021). A novel implementation of the LDEM in the ANSYS LS-DYNA finite element code. Materials, 14(24), 7792.https://doi.org/10.3390/ma14247792
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

