Implementation of Peridynamic in the ANSYS LS-DYNA: Verification and Fracture Analysis

Autores/as

  • Adryel Vinicius Guarnieri Pinto Universidade Federal do Pampa, Grupo de Pesquisa em Máquinas, Materiais e Processos de Fabricação (GPMAP). Alegrete - RS, Brasil.
  • Queler Ribeiro dos Santos Universidade Federal do Pampa, Grupo de Pesquisa em Máquinas, Materiais e Processos de Fabricação (GPMAP). Alegrete - RS, Brasil.
  • Angélica Bordin Colpo Universidade Federal do Pampa, Grupo de Pesquisa em Máquinas, Materiais e Processos de Fabricação (GPMAP). Alegrete - RS, Brasil.
  • Leandro Ferreira Friedrich Universidade Federal do Pampa, Grupo de Pesquisa em Máquinas, Materiais e Processos de Fabricação (GPMAP). Alegrete - RS, Brasil.
  • Vicente Bergamini Puglia Universidade Federal do Pampa, Grupo de Pesquisa em Máquinas, Materiais e Processos de Fabricação (GPMAP). Alegrete - RS, Brasil.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8422

Palabras clave:

Peridynamics, Fracture Mechanics, Crack Propagation, Finite Element Method, Hybrid Numerical Models, ANSYS LS-DYNA

Resumen

Problems solved by computational mechanics are becoming increasingly complex, involving diverse geometries, boundary conditions, and materials. Recent studies show that combining different numerical methodologies is one of the most effective approaches for advancing fracture simulation. In this context, this work presents the implementation of Peridynamics (PD) theory in the ANSYS LSDYNA finite element software, enabling the creation of hybrid models called PD-DYNA. PD is a nonlocal theory in which particles are connected to one another, forming a continuum representation. Since the theory is not based on classical continuum mechanics, fracture simulation occurs naturally through bond breakage. To assess the results, comparisons with reference problems using the Finite Element Method are carried out to verify the implementation, while benchmark cases are employed to validate the fracture behavior of brittle materials. The results highlight the computational efficiency and applicability of the proposed implementation in structural analyses. This work emphasizes the potential of integrating PD and LS-DYNA as an advanced tool for fracture analysis in material engineering, pointing toward promising applications in new materials, varied loading conditions, and three-dimensional problems.

Citas

Anderson T.L. Fracture Mechanics: Fundamentals and Applications. CRC Press, 4 edition, 2017. http://doi.org/10.1201/9781315370293.

Belytschko T., Liu W., and Moran B. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, 2 edition, 2014. ISBN 978-1-118-63270-3.

Bi´cani´c N. Discrete element methods. In E. Stein, R. de Borst, and T. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1, pages 1–25. John Wiley & Sons, 2004. http://doi.org/10.1002/9781119176817.ecm2006.

Braun M. and Fernández-Sáez J. A new 2D discrete model applied to dynamic crack propagation in brittle materials. International Journal of Solids and Structures, 51(21-22):3787– 3797, 2014. http://doi.org/10.1016/j.ijsolstr.2014.07.014.

Cabral N.R., Invaldi M.A., D’Ambra R.B., and Iturrioz I. An alternative bilinear peridynamic model to simulate the damage process in quasi-brittle materials. Engineering Fracture Mechanics, 216:106494, 2019. http://doi.org/10.1016/j.engfracmech.2019.106494.

Fang G., Liu S., Fu M., Wang B., Wu Z., and Liang J. A method to couple state-based peridynamics and finite element method for crack propagation problem. Mechanics Research Communications, 95:89–95, 2019. http://doi.org/10.1016/j.mechrescom.2019.01.005.

Islam M.R.I. and Shaw A. Numerical modelling of crack initiation, propagation and branching under dynamic loading. Engineering Fracture Mechanics, 224:106760, 2020. http://doi.org/10.1016/j.engfracmech.2019.106760.

Javili A., Morasata R., Oterkus E., and Oterkus S. Peridynamics review. Mathematics and Mechanics of Solids, 24(11):3714–3739, 2019. http://doi.org/10.1177/1081286518803411.

Macek R.W. and Silling S.A. Peridynamics via finite element analysis. Finite Elements in Analysis and Design, 43(15):1169–1178, 2007. http://doi.org/10.1016/j.finel.2007.08.012.

Maciel G.d.S. Implementation of peridynamic in the ansys ls-dyna: Verification and fracture analisys. 2022.

Silling S.A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1):175–209, 2000. http://doi.org/10.1016/S0022-5096(99)00029-0.

Silling S.A. and Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83(17-18):1526–1535, 2005. http://doi.org/10.1016/j.compstruc.2004.11.026.

Song J., Wang H., and Belytschko T. A comparative study on finite element methods for dynamic fracture. Computational Mechanics, 42(2):239–250, 2008. http://doi.org/10.1007/s00466-007-0210-x.

Sun W. and Fish J. Superposition-based coupling of peridynamics and finite element method. Computational Mechanics, 64:231–248, 2019. http://doi.org/10.1007/s00466-019-01668-5.

Descargas

Publicado

2025-12-03

Número

Sección

Artículos completos del congreso MECOM 2025

Artículos más leídos del mismo autor/a