Comparative Modeling of Quasi Brittle Fracture Using a Truss-Based Discrete Element Method and a Phase Field Formulation
DOI:
https://doi.org/10.70567/mc.v42.ocsid8273Palabras clave:
Quasi Brittle Materials, Fracture Mechanics, Discrete Element Method (DEM), Phase Field Method (PFM), Numerical modeling of cracks, Strength and ToughnessResumen
This work presents a comparative study between two numerical approaches for modeling fracture in quasi-brittle materials: the truss-based Discrete Element Method (DEM) and the Phase Field Method (PFM), formulated within the Finite Element Method (FEM) framework. In the version of the Discrete Element Method used here (referred to as DEM), the spatial discretization is performed using a regular arrangement of pinned bars with masses concentrated at the nodes. The equivalent cross-sectional area of the diagonal and normal bars allows the representation of an equivalent elastic solid. To capture the nonlinear mechanical behaviour produced for the evolution of the material damage, a bilinear constitutive law is applied to each bar. This formulation enables the definition of a motion equation that must be integrated in time using an explicit scheme, such as the central difference finite difference method. An important feature of the present model is its ability to incorporate material properties as random fields. In contrast, the phase field model introduces a scalar damage field to describe fracture as a continuous transition in the medium, and in this work, it is implemented based on the Principle of Virtual Work. To compare the performance of both methods, three examples are presented. A Single Edge Notch Bending (SENB) performed in epoxy resin, a Notched Plate with Hole (NPWH) also built in cement mortar, and finally a parametric study where the influence of the material parameters of a specimen composed of a substrate, and an interface orthogonal to the crack propagation direction is analyzed. The comparison of the two approaches through these three examples allows the identification of the strengths and weaknesses of each method.
Citas
Bourdin B., Marigo J.J., Maurini C., and Sicsic P. Morphogenesis and propagation of complex cracks induced by thermal shocks. Physical review letters, 112:014–301, 2014. http://doi.org/10.1103/PhysRevLett.112.014301.
Cavuoto R., Lenarda P., Misseroni D., Paggi M., and Bigoni D. Failure through crack propagation in components with holes and notches: An experimental assessment of the phase field model. International Journal of Solids and Structures, 257:111–798, 2022. http://doi.org/10.1016/j.ijsolstr.2022.111798.
Duda F.P., Ciarbonetti A., Sánchez P.J., and Huespe A.E. A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. International Journal of Plasticity, 65:269–296, 2015. http://doi.org/10.1016/j.ijplas.2014.09.005.
Francfort G. and Marigo J.J. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46:1319–1342, 1998. http://doi.org/10.1016/S0022-5096(98)00034-9.
Hayashi Y. Sobre um modelo de discretização de estruturas tridimensionais aplicado em dinâmica não linear. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 1982. http://doi.org/INIS-BR–135.
Kosteski L., Barrios D’Ambra R., and Iturrioz I. Crack propagation in elastic solids using the truss-like discrete element method. International journal of fracture, 174:139–161, 2012. http://doi.org/10.1007/s10704-012-9684-4.
Kosteski L., Iturrioz I., Galiano Batista R., and Cisilino A.P. The truss-like discrete element method in fracture and damage mechanics. Engineering Computations, 28:765–787, 2011. http://doi.org/10.1108/02644401111154664.
Kosteski L.E., Friedrich L.F., Costa M.M., Bremm C., Iturrioz I., Xu J., and Lacidogna G. Fractal scale effect in quasi-brittle materials using a version of the discrete element method. Fractal and Fractional, 8:678, 2024. http://doi.org/10.3390/fractalfract8120678.
Li Y., Huang K., Yu H., Hao L., and Guo L. Experimentally validated phasefield fracture modeling of epoxy resins. Composite Structures, 279:114–806, 2022. http://doi.org/10.1016/j.compstruct.2021.114806.
Miehe C., Hofacker M., andWelschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 199:2765–2778, 2010. http://doi.org/10.1016/j.cma.2010.04.011.
Nguyen T.T., Yvonnet J., Bornert M., Chateau C., Sab K., Romani R., and Roy R.L. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. International Journal of Fracture, 197:213–226, 2016. http://doi.org/10.1007/s10704-016-0082-1.
Pham K., Amor H., Marigo J.J., and Maurini C. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 20:618–652, 2011. http://doi.org/10.1177/1056789510386852.
Rocha M.M. Ruptura e efeito de escala em materiais não-homogêneos de comportamento frágil. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 1989. http://doi.org/hdl.handle.net/10183/170724.
Tanné E., Li T., Bourdin B., Marigo J.J., and Maurini C. Crack nucleation in variational phasefield models of brittle fracture. Journal of the Mechanics and Physics of Solids, 110:80–99, 2018. http://doi.org/10.1016/j.jmps.2017.09.006.
Zambrano J., Toro S., Sánchez P.J., Duda F.P., Méndez C.G., and Huespe A.E. Interaction analysis between a propagating crack and an interface: Phase field and cohesive surface models. International Journal of Plasticity, 156:103–341, 2022. http://doi.org/10.1016/j.ijplas.2022.103341.
Zambrano J., Toro S., Sánchez P.J., Duda F.P., Méndez C.G., and Huespe A.E. An arc-length control technique for solving quasi-static fracture problems with phase field models and a staggered scheme. Computational Mechanics, 73:751–772, 2024. http://doi.org/10.1007/s00466-023-02388-7.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

