A Geometrization of the Configurational Problem. Plasticity and Micromechanics of Nonsaturated Porous Media

Autores/as

  • Héctor A. Di Rado Universidad Nacional del Nordeste, Laboratorio de Mecánica Computacional LAMEC - IMIT (CONICET). Resistencia, Argentina.
  • Javier L. Mroginski Universidad Nacional del Nordeste, Laboratorio de Mecánica Computacional LAMEC - IMIT (CONICET). Resistencia, Argentina.
  • Pablo A. Beneyto Universidad Nacional del Nordeste, Laboratorio de Mecánica Computacional LAMEC - IMIT (CONICET). Resistencia, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8584

Palabras clave:

Configurational forces, K-parallelism, Elastoplasticity, Porous media, Henckytype strain energy

Resumen

The primary objective of this work is to evaluate configurational forces by leveraging the geometric structure of the material manifold and the projection of the actual deformation onto it. Two classes of problems are addressed: finite-strain elastoplasticity and pseudo-finite-strain micromechanics in non-saturated porous media. General conditions for the strain energy function are established, and a global balance of pseudomomentum is formulated within a fully material manifold described in terms of a K-configuration. A natural frame of reference is introduced, characterised by K-parallelism (in the sense of Cartan), whereby each point of the elastic solid is associated with a unique stress-free reference configuration via the inverse of K. A Hencky-type form of the strain energy in the relaxed configuration is proposed, derived from general energetic and geometrical considerations. The resulting configurational forces are examined for two scenarios: (i) homogeneous elastoplastic solids with an arbitrary K-reference, and (ii) inhomogeneous porous media in the context of Biot-type formulations. A nonlinear expression for the configurational forces is obtained, which exhibits consistent convergence to the classical infinitesimal-strain formulation in the Biot case. The proposed framework provides a unified geometric basis for both elastoplasticity and micromechanics, and can be extended to other inhomogeneity-driven problems This behavior was numerically observed through the implementation of the boundary value problem using the Finite Element Method.

Citas

Alhasadi M.F. and Salvatore F. Relation between eshelby stress and eshelby fourth-order tensor within an ellipsoidal inclusion. Acta Mech., 228:1045–1069, 2017.

Anthony K.H. Die theorie der disklinationen. Arch. Rat. M echo Anal., 39:43–88, 1970.

Beneyto P.A., Di Rado H.A., Mroginski J.L., and Awruch A.M. A versatile mathematical approach for environmental geomechanic modeling based on stress state decomposition. Appl. Math. Model., 39(22):6880–6896, 2015.

Bilby B., Bullough R., and Smith E. Continuous distributions of dislocations: new application of the methods of non-riemannian geometry. Proc. Roy. Soc. Lond. A, 231:263–273, 1955.

Biot M.A. General theory of three dimensional consolidation. J. Appl. Phys., 12(2):155–164, 1941. https://doi.org/10.1063/1.1712886.

Burgers J. Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. Proceedings of the Section of Sciences of the Royal Netherlands Academy of Arts and Sciences, 42:293–325, 1939.

Cartan E. Le parallélisme absolu et la théorie unitaire du champ. Revue de Métaphysique et de Morale, 38(1):13–28, 1931.

Choquet-Bruhat Y. Geometrie Differentielle et Systemes Exterieurs. Dunod, Paris, 1968.

Di Rado H.A., Beneyto P.A., and Mroginski J.L. Preliminaries for a new mathematical framework for modelling tumour growth using stress state decomposition technique. Journal of Biosciences and Medicines, 8:73–81, 2020. https://doi.org/doi.org/10.4236/jbm.2020.82006.

Di Rado H.A., Mroginski J.L., Beneyto P., and Barreto J. An eshelbian micromechanics approach to non-saturated porous media. Latin American Journal of Solids and Structures, 22(10):e8643, 2025.

Dormieux L., Kondo D., and Ulm F.J. Microporomechanics. Wiley, 2006. ISBN 978-0-470-03188-9.

Epstein M. and Maugin G.A. The energy-momentum tensor and material uniformity in finite elasticity. Acta Mech., 83:127–133, 1990. https://doi.org/doi.org/10.1007/BF01172974

Eshelby J. The energy-momentum tensor. Journal of Elasticity, 5:321–335, 1975.

Eshelby J.D. The force on an elastic singularity. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 244:87–112, 1951. https://doi.org/doi.org/10.1098/rsta.1951.0016.

Hashiguchi K. and Yamakawa Y. Introduction to finite strain theory for continuum elastoplasticity. John Wiley & Sons Ltd, 2013.

Kondo K. Non-riemannian geometry of imperfect crystals from a macroscopic viewpoint. In: Kondo, K. (ed.) RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by Means of geometry, Gakujutsu Bunken Fukyukai, Tokyo, 1:459–480, 1955.

Kröner E. Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag, Berlin,

Kröner E. and Datta B.K. Nichtlokale elastostatik: Ableitung aus der gittertheorie. Z. Physik, 196:203–211, 1966. https://doi.org/doi.org/10.1007/BF01330987.

Lewis R. and Schrefler B. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons, 1998.

Maugin G.A. Material inhomogeneities in elasticity. Chapman and Hall/CRC, 1993. ISBN 9781003059882. https://doi.org/doi.org/10.1201/9781003059882.

Mroginski J.L., Di Rado H.A., Beneyto P.A., and Awruch A.M. A finite element approach for multiphase fluid flow in porous media. Math. Comput. Simul., 81(1):76–91, 2010.

Noll W. Materially uniform simple bodies with inhomogeneities. Arch. Rational Mech. Anal., 27:1–32, 1967.

Schrefler B.A. Computer modelling in environmental geomechanics. 79(22):2209–2223, 2001. https://doi.org/https://doi.org/10.1016/S0045-7949(01)00076-1.

Stojanovic R. Mechanics of Polar Continua. CISM Lectures, Udine, Italy, 1969.

Wang C. On the geometric structure of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Rat. Mech. Anal., 27:33–94, 1967.

Weitzenböck R. Invariantentheorie. P. Noordhoff, 1923.

Descargas

Publicado

2025-12-03