Analysis of a Mass-Spring-Damper System's Response Under Stochastic Loading: A Wasserstein Metric-Based Approach
DOI:
https://doi.org/10.70567/mc.v42.ocsid8248Palabras clave:
Stationary Stochastic Processes, Random Vibrations, Engineer Metric, Wasserstein MetricResumen
This paper investigates the response of a deterministic, linear, time-invariant mass-spring-damper system subjected to loading modeled as a stationary stochastic process. The primary objective is to investigate, through numerical simulations using the Monte Carlo method, whether the system response exhibits stationary properties in the steady state. The analysis employs two metrics: engineering distance, which focuses on the proximity of distribution means, and Wasserstein distance, which provides a more robust comparison by quantifying divergence between probability distributions across different sections of the stochastic process. The methodology presented can be adapted for the analysis of other mechanical systems, including nonlinear systems.
Citas
Benaroya H. and Han S. Probability Models in Engineering and Science. Taylor & Francis Group, LLC, Boca Raton FL, United States, 2005. ISBN 978-0-8247-2315-6.
Bigot J. Statistical data analysis in the wasserstein space. ESAIM: Proceedings and Surveys, 68:1–19, 2020. https://doi.org/10.1051/proc/202068001.
Deza M.M. and Deza E. Encyclopedia of Distances. Springer, Russia, France, 4 edition, 2016. ISBN 978-3-662-52844-0. https://doi.org/10.1007/978-3-662-52844-0.
Inman D.J. Engineering vibrations. Pearson Education, New Jersey, United States, 4 edition, 2014. ISBN 978-0-13-287169-3.
Lobato J.F.C. Desenvolvimento de uma metodologia para análises estatísticas de um sistema massa-mola-amortecedor excitado por um carregamento estocástico, 2024. https://doi.org/10.17771/PUCRio.acad.68856. Graduation Project, Department of Mechanical Engineering, PUC-Rio, Rio de Janeiro.
Rachev S.T., Klebanov L.B., Stoyanov S.V., and Fabozzi F.J. The Methods of Distances in the Theory of Probability and Statistics. Springer, United States, Czechia, Singapore, France, 2013. ISBN 978-1-4614-4869-3. https://doi.org/10.1007/978-1-4614-4869-3.
Sampaio R. and Lima R. Modelagem estocástica e geração de amostras de variáveis e vetores aleatórios, volume 70 of Notas em Matemática Aplicada. Sociedade Brasileira de Matemática Aplicada e Computacional, São Carlos - SP, Brazil, 2012.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

