A Verified Hydrodynamic-Thermal Baseline for Wax Transport and Deposition Modeling in Oil Pipelines

Autores/as

  • Ezequiel A. Krumrick Universidad Tecnológica Nacional, Facultad Regional del Neuquén, Departamento de Ingeniería Química. Plaza Huincul, Argentina. https://orcid.org/0000-0003-3282-1076
  • Ezequiel J. López Instituto de Investigación en Tecnologías y Ciencias de la Ingeniería, CONICET - Universidad Nacional del Comahue. Neuquén, Argentina.
  • Alberto G. Camacho Universidad Tecnológica Nacional, Facultad Regional del Neuquén, Departamento de Ingeniería Química. Plaza Huincul, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8281

Palabras clave:

Wax deposition, flow assurance, heat transfer, mass transfer, CFD verification, OpenFOAM

Resumen

A verified hydrodynamic-thermal baseline for laminar channel flow is established as a foundation for future wax-transport and wall-deposition modeling. The OpenFOAM 12 setup (meshing, numerics) is documented and a concise post-processing protocol is provided to ensure reproducibility. Convergence to a statistically steady regime is quantified via relative l2 norms of velocity and temperature referenced to t = 35 s. Local heat transfer is obtained from wall temperature gradients and bulk definitions, reporting streamwise Nusselt number as temporal medians with interquartile ranges over 30-35 s. The curve of the streamwise Nusselt number shows a short thermal-entry peak and approaches an asymptote at approximately 9.2 by a non-dimensional distance of about 13 hydraulic diameters. Latent effects and deposition kinetics are not included. The resulting dataset provides a verified reference upon which dissolved-wax transport and wall-layer growth will be coupled and validated.

Citas

Aiyejina A., Chakrabarti D.P., Pilgrim A., and Sastry M.K.S. Wax formation in oil pipelines: A critical review. International Journal of Multiphase Flow, 37(7):671–694, 2011. https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007.

Arias M.L., D’Adamo J.G.L., Novosad M.N., Raffo P.A., Burbridge H.P., and Artana G.O. An in-depth experimental study of wax deposition in pipelines. International Journal of Aerospace and Mechanical Engineering, 18(4):144–152, 2024. ISSN 2393-8609.

Azevedo L.F.A. and Teixeira A.M. A critical review of the modeling of wax deposition mechanisms. Petroleum Science and Technology, 21(3-4):393–408, 2003. https://doi.org/10.1081/LFT-120018528.

Banki R., Hoteit H., and Firoozabadi A. Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy–porosity approach and irreversible thermodynamics. International Journal of Heat and Mass Transfer, 51(13–14):3387–3398, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.012.

Burger E.D., Perkins T.K., and Striegler J.H. Studies of wax deposition in the trans alaska pipeline. Journal of Petroleum Technology, 33(6):1075–1086, 1981. https://doi.org/10.2118/8788-PA.

Celik I.M., Ghia U., Roache P.J., Freitas C.J., Coleman H., and Raad P.E. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7):078001, 2008. https://doi.org/10.1115/1.2960953.

Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3):357–393, 1983. https://doi.org/10.1016/0021-9991(83)90136-5.

Jasak H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Phd thesis, Imperial College of Science, Technology and Medicine, University of London, 1996.

Kiyingi W., Guo J.X., Xiong R.Y., Su L., Yang X.H., and Zhang S.L. Crude oil wax: A review on formation, experimentation, prediction, and remediation techniques. Petroleum Science, 19(5):2343–2357, 2022. https://doi.org/10.1016/j.petsci.2022.08.008.

Krumrick E.A. and López E.J. Numerical simulation of heat transfer in a flow assurance loop. In X Congreso de Matemática Aplicada, Computacional e Industrial (MACI 2025). AMCA, Córdoba, Argentina, 2025. Sesión S25.

LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, 2002. ISBN 9780521009249.

Magnini M. and Matar O.K. Fundamental study of wax deposition in crude oil flows in a pipeline via interface-resolved numerical simulations. Industrial & Engineering Chemistry Research, 58:21797–21816, 2019. https://doi.org/10.1021/acs.iecr.9b05250.

Mahir L.H.A., Lee J., Fogler H.S., and Larson R.G. An experimentally validated heat and mass transfer model for wax deposition from flowing oil onto a cold surface. AIChE Journal, 67:e17063, 2021. https://doi.org/10.1002/aic.17063.

Mehrotra A.K., Ehsani S., Haj-Shafiei S., and Kasumu A.S. A review of heat-transfer mechanism for solid deposition from “waxy” or paraffinic mixtures. Canadian Journal of Chemical Engineering, 98(12):2463–2488, 2020. https://doi.org/10.1002/cjce.23829.

Moukalled F., Mangani L., and Darwish M. The Finite Volume Method in Computational Fluid Dynamics, volume 113 of Fluid Mechanics and Its Applications. Springer, Cham, 2016. ISBN 978-3-319-16873-9. https://doi.org/10.1007/978-3-319-16874-6.

Richardson L.F. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society A, 210:307–357, 1911.

Roache P.J. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, NM, 1998. ISBN 9780913478080.

Shah R.K. and London A.L. Laminar Flow Forced Convection in Ducts. Academic Press, New York, 1978.

Singh P., Venkatesan R., Fogler H.S., and Nagarajan N. Formation and aging of incipient thin film wax–oil gels. AIChE Journal, 46(5):1059–1074, 2000. https://doi.org/10.1002/aic.690460517.

Singh P., Venkatesan R., Fogler H.S., and Nagarajan N.R. Morphological evolution of thick wax deposits during aging. AIChE Journal, 47(1):6–18, 2001. https://doi.org/10.1002/aic.690470103.

Sweby P.K. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984. https://doi.org/10.1137/0721062.

Weller H.G., Tabor G., Jasak H., and Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620–631, 1998. https://doi.org/10.1063/1.168744.

Descargas

Publicado

2025-12-09

Número

Sección

Artículos completos del congreso MECOM 2025