Application of Topological Derivative to the Optimal Design of Three-Dimensional Structural Arrangements of Flat Plates
DOI:
https://doi.org/10.70567/mc.v41i16.85Palabras clave:
Folded structures, Structural optimization, Topological optimizationResumen
This work addresses the problem of optimal topological design of three-dimensional structures composed of plate arrays based on the use of topological derivatives. These structural arrays consist of planar elements linked at their edges. Their modeling is performed by coupling a membrane model and a bending-plate model. The geometric and material representation is accomplished using level-set curves. To minimize a cost function, the topological derivative value is used to guide the evolution of the level-set curve. A theoretical framework and case studies of academic and industrial applications are presented.
Citas
Amstutz S. A penalty method for topology optimization subject to a pointwise state constraint. ESAIM: Control, Optimisation and Calculus of Variations, 16(3):523-544, 2010. https://doi.org/10.1051/cocv/2009013
Amstutz S. and Andrä H. A new algorithm for topology optimization using a level-set method. Journal of Computational Physics, 216(2):573-588, 2006. https://doi.org/10.1016/j.jcp.2005.12.015
Batoz J.L. An explicit formulation for an efficient triangular plate-bending element. International Journal for Numerical Methods in Engineering, 18:1077-1089, 1982. https://doi.org/10.1002/nme.1620180711
Campeão D., Giusti S., and Novotny A. Topology design of plates considering different volume control methods. Engineering Computations, 31(5):826-842, 2014. https://doi.org/10.1108/EC-10-2012-0244
Carvalho F., Ruscheinsky D., Anflor C., Giusti S., and Novotny A. Topological derivative-based topology optimization of plate structures under bending effects. Structural and Multidisciplinary Optimization, 63:617-630, 2021. https://doi.org/10.1007/s00158-020-02710-4
Felippa C. A study of optimal membrane triangles with drilling freedoms. Computer Methods in Applied Mechanics and Engineering, 192(16-18):2125-2168, 2003. https://doi.org/10.1016/S0045-7825(03)00253-6
Felippa C. and Militello C. Membrane triangles with corner drilling freedoms-ii. the andes element. Finite Elements In Analysis and Design, 12(3-4):189-201, 1992. https://doi.org/10.1016/0168-874X(92)90034-A
Novotny A. and Sokolowski J. Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-642-35245-4
Romero A. Optimum design of two-material bending plate compliant devices. Engineering Computations, 39(1):395-420, 2022. https://doi.org/10.1108/EC-07-2021-0400
Romero A.A. and Giusti S.M. A robust topological derivative-based multi-material optimization approach: Optimality condition and computational algorithm. Computer Methods in Applied Mechanics and Engineering, 366:113044, 2020. https://doi.org/10.1016/j.cma.2020.113044
Sales V., Novotny A., and Rivera J.M. Energy change to insertion of inclusions associated with the Reissner-Mindlin plate bending model. International Journal of Solids and Structures, 59:132-139, 2015. https://doi.org/10.1016/j.ijsolstr.2015.01.019
Sokolowski J. and Zolésio J.P. Introduction to shape optimization - shape sensitivity analysis. Springer-Verlag, Berlin, Germany, 1992.
Zochowski A. Optimal perforation design in 2-dimensional elasticity. Mechanics of Structures and Machines, 16(1):17-33, 1988. https://doi.org/10.1080/08905458808960251
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.