Diseño de Estructuras Porosas para Regeneración Ósea a Partir de un Modelo de Aprendizaje Automático y Simulación Mecánica Computacional
DOI:
https://doi.org/10.70567/mc.v41i17.90Palabras clave:
Implantes óseos, estructuras porosas, regeneración ósea, impresión 3D, aprendizaje inteligente, simulación mecánica computacionalResumen
La incorporación reciente de la impresión 3D en los procesos de manufactura, ha revolucionado la medicina regenerativa en traumatología (MRT) al permitir la fabricación de implantes con estructuras porosas para promover la regeneración ósea (RO). Se han identificado dos características clave de estas estructuras: excelentes propiedades mecánicas y biocompatibilidad. Sin embargo, se han reportado resultados diversos a partir de la evaluación de variantes geométricas respecto a las características morfológicas óptimas para estimular la RO. Este trabajo propone una metodología novedosa para diseñar implantes óseos con estructuras optimizadas, mediante Aprendizaje Inteligente y Simulación Mecánica Computacional. A partir de una búsqueda bibliográfica se creó una base de datos de 100 estructuras porosas 3D con potencial comprobado para estimular la RO. A partir de ella se entrenó un Modelo Estadístico de Forma para capturar las características morfológicas de cada geometría y que el mismo modelo genere una librería de estructuras nuevas. Éstas se evaluaron mediante SMC, utilizando el Método de los Elementos Finitos y se seleccionaron las geometrías con mejor rendimiento mecánico para una posible respuesta biológica. Las estructuras optimizadas obtenidas abren un camino hacia la validación in vivo para la promoción de la RO, con potencial impacto en la MRT.
Citas
Al-Ketan, O., Abu Al-Rub, R.K., 2021. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3. https://doi.org/10.1002/mdp2.205
Al-Ketan, O., Lee, D.-W., Rowshan, R., Abu Al-Rub, R.K., 2020. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 102, 103520. https://doi.org/10.1016/j.jmbbm.2019.103520
Amin Yavari, S., Van Der Stok, J., Chai, Y.C., Wauthle, R., Tahmasebi Birgani, Z., Habibovic, P., Mulier, M., Schrooten, J., Weinans, H., Zadpoor, A.A., 2014. Bone regen. performance of surface-treated porous Ti. Biomaterials 35, 6172-6181. https://doi.org/10.1016/j.biomaterials.2014.04.054
Arabnejad, S., Burnett Johnston, R., Pura, J.A., Singh, B., Tanzer, M., Pasini, D., 2016. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 30, 345-356. https://doi.org/10.1016/j.actbio.2015.10.048
Bosio, V. E., Rybner C., D. L. Kaplan, 2023. Concentric-mineralized hybrid silk-based scaffolds for bone tissue engineering in vitro models J. Mater. Chem. B, 11, 7998. https://doi.org/10.1039/D3TB00717K
Cates, J., Elhabian, S., Whitaker, R., 2017. ShapeWorks: Statistical Shape and Deformation Analysis. Elsevier, pp. 257-298. https://doi.org/10.1016/B978-0-12-810493-4.00012-2
Chen, C., Hao, Y., Bai, X., Ni, J., Chung, S.-M., Liu, F., Lee, I.-S., 2019. 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model. Mater. Des. 175, 107824. https://doi.org/10.1016/j.matdes.2019.107824
Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., Ma, W., Qi, W., Ren, Z., Liao, H., Liu, M., Cai, D., Fang, H., 2020a. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C Mater. Biol. Appl. 106, 110289. https://doi.org/10.1016/j.msec.2019.110289
Chen, Z., Yan, X., Yin, S., Liu, L., Liu, X., Zhao, G., Ma, W., Qi, W., Ren, Z., Liao, H., Liu, M., Cai, D., Fang, H., 2020b. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C 106, 110289. https://doi.org/10.1016/j.msec.2019.110289
Cheong, V.S., Fromme, P., Coathup, M.J., Mumith, A., Blunn, G.W., 2020. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure. Ann. Biomed. Eng. 48, 502-514. https://doi.org/10.1007/s10439-019-02369-z
Cheong, V.S., Fromme, P., Mumith, A., Coathup, M.J., Blunn, G.W., 2018. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J. Mech. Behav. Biomed. Mater. 87, 230-239. https://doi.org/10.1016/j.jmbbm.2018.07.019
Crovace, A.M., Lacitignola, L., Forleo, D.M., Staffieri, F., Francioso, E., Di Meo, A., Becerra, J., Crovace, A., Santos -Ruiz, L., 2020. 3D Biomimetic Porous Titanium (Ti6Al4V ELI) Scaffolds for Large Bone Critical Defect Reconstruction: An Experimental Study in Sheep. Anim. Open Access J. MDPI 10, 1389. https://doi.org/10.3390/ani10081389
Cwieka, K., Skibinski, J., 2022. Elastic Properties of Open Cell Metallic Foams-Modeling of Pore Size Variation Effect. Materials15, 6818. https://doi.org/10.3390/ma15196818
Deng, F., Liu, L., Li, Z., Liu, J., 2021. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ing rowth. J.Biol. Eng. 15, 4. https://doi.org/10.1186/s13036-021-00255-8
Draper, S., Lerch, B., Rogers, R., Martin, R., Locci, I., Garg, A., 2016. Materials Characterization of Electron Beam Melted Ti-6Al- 4V, in: Venkatesh, V., Pilchak, A.L., Allison, J.E., Ankem, S., Boyer, R., Christodoulou, J., Fraser, H.L., Imam, M.A., Kosa ka, Y., Rack, H.J., Chatterjee, A., Woodfield, A. (Eds.), Proceedings of the 13th World Conference on Titanium. Wiley, pp. 1433 -1440. https://doi.org/10.1002/9781119296126.ch242
Fan, B., Guo, Z., Li, X., Li, S., Gao, P., Xiao, X., Wu, J., Shen, C., Jiao, Y., Hou, W., 2020. Electroactive barium titanate coated titanium scaffold improves osteogenesis and osseointegration with low-intensity pulsed ultrasound for large segmental bone https://doi.org/10.1016/j.bioactmat.2020.07.001
Heyland, M., Deppe, D., Reisener, M.J., Damm, P., Taylor, W.R., Reinke, S., Duda, G.N., Trepczynski, A., 2023. Lower -limb internal loading and potential consequences for fracture healing. Front. Bioeng. Biotechnol. 11, 1284091. https://doi.org/10.3389/fbioe.2023.1284091
Gao, H., Yang, J., Jin, X., Zhang, D., Zhang, S., Zhang, F., Chen, H., 2023. Static Compressive Behavior and Failure Mechanism of Tantalum Scaffolds with Optimized Periodic Lattice Fabricated by Laser-Based Additive Manufacturing. 3D Print. Addit. Manuf. 10, 887-904. https://doi.org/10.1089/3dp.2021.0253
García-Gareta, E., Hua, J., Blunn, G.W., 2015. Osseointegration of acellular and cellularized osteoconductive scaffolds: Is t issue eng. using mesenchymal stem cells necessary for implant fixation? J. Biomed. Mater. Res. A 103, 1067-1076. https://doi.org/10.1002/jbm.a.35256
Goparaju, A., Csecs, I., Morris, A., Kholmovski, E., Marrouche, N., Whitaker, R., Elhabian, S., 2018. On the Evaluation and Validation of Off-the-Shelf SSM Tools: A Clinical Application, in: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (Eds.), Shape in Medical Imaging, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 14-27. https://doi.org/10.1007/978-3-030-04747-4_2
Gu, Y., Sun, Y., Shujaat, S., Braem, A., Politis, C., Jacobs, R., 2022. 3D-printed porous Ti6Al4V scaffolds for long bone repair in animal models: a systematic review. J. Orthop. Surg. 17, 68. https://doi.org/10.1186/s13018-022-02960-6
Guo, Y., Xie, K., Jiang, W., Wang, L., Li, G., Zhao, S., Wu, W., Hao, Y., 2019. In Vitro and in Vivo Study of 3D-Printed Porous Tantalum Scaffolds for Repairing Bone Defects. ACS Biomater. Sci. Eng. 5, 1123-1133. https://doi.org/10.1021/acsbiomaterials.8b01094
Hara, D., Nakashima, Y., Sato, T., Hirata, M., Kanazawa, M., Kohno, Y., Yoshimoto, K., Yoshihara, Y., Nakamura, A., Nakao, Y. , Iwamoto, Y., 2016. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater. Sci. Eng. C 59, 1047-1052. https://doi.org/10.1016/j.msec.2015.11.025
Huang, H., Lan, P.-H., Zhang, Y.-Q., Li, X.-K., Zhang, X., Yuan, C.-F., Zheng, X.-B., Guo, Z., 2015. Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V implants generated by electron beam melting. Surf. Coat. Technol. 283, 80-88. https://doi.org/10.1016/j.surfcoat.2015.10.047
Koolen, M., Amin Yavari, S., Lietaert, K., Wauthle, R., Zadpoor, A.A., Weinans, H., 2020. Bone Regeneration in Critical -Sized Bone Defects Treated with Additively Manufactured Porous Metallic Biomaterials: The Effects of Inelastic Mechanical Properties. Materials 13, 1992. https://doi.org/10.3390/ma13081992
Li, J., Li, Z., Shi, Y., Wang, H., Li, R., Tu, J., Jin, G., 2019. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fab. by the selective laser melting technique and a new sintering technique. J. Mech. Behav. Biomed. Mater. 91, 149-158. https://doi.org/10.1016/j.jmbbm.2018.12.007
Li, L., Shi, J., Zhang, K., Yang, L., Yu, F., Zhu, L., Liang, H., Wang, X., Jiang, Q., 2019. Early osteointegration evaluatio n of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J. Orthop. Transl. 19, 94-105. https://doi.org/10.1016/j.jot.2019.03.003
Li, P., Jiang, W., Yan, J., Hu, K., Han, Z., Wang, B., Zhao, Y., Cui, G., Wang, Z., Mao, K., Wang, Y., Cui, F., 2019. A novel 3D printed cage with microporous structure and in vivo fusion function. J. Biomed. Mater. Res. A 107, 1386-1392. https://doi.org/10.1002/jbm.a.36652
Li, S., Cui, Y., Liu, H., Tian, Y., Fan, Y., Wang, G., Wang, J., Wu, D., Wang, Y., 2024. Dual -functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis. Mater. Today Bio 24, 100943. https://doi.org/10.1016/j.mtbio.2024.100943
Li, Y., Yang, W., Li, Xiaokang, Zhang, X., Wang, Cairu, Meng, X., Pei, Y., Fan, X., Lan, P., Wang, Chunhui, Li, Xiaojie, Guo, Z., 2015a. Improving Osteointegration and Osteogenesis of Three-Dimensional Porous Ti6Al4V Scaffolds by Polydopamine-Assisted Biomimetic Hydroxyapatite Coating. ACS Appl. Mater. Interfaces 7, 5715-5724. https://doi.org/10.1021/acsami.5b00331
Li, Y., Yang, W., Li, Xiaokang, Zhang, X., Wang, Cairu, Meng, X., Pei, Y., Fan, X., Lan, P., Wang, Chunhui, Li, Xiaojie, Guo, Z., 2015b. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl. Mater. Interfaces 7, 5715-5724. https://doi.org/10.1021/acsami.5b00331
Li, Z., Liu, C., Wang, B., Wang, C., Wang, Z., Yang, F., Gao, C., Liu, H., Qin, Y., Wang, J., 2018. Heat treatment effect on the mec. properties, roughness and bone ingrowth capacity of 3D printing porous Ti alloy. RSC Adv. 8, 12471-12483. https://doi.org/10.1039/C7RA13313H
Limmahakhun, S., Oloyede, A., Sitthiseripratip, K., Xiao, Y., Yan, C., 2017. 3D-printed cellular structures for bone biomimetic implants. Addit. Manuf. 15, 93-101. https://doi.org/10.1016/j.addma.2017.03.010
Liu, H., Li, W., Liu, C., Tan, J., Wang, H., Hai, B., Cai, H., Leng, H.-J., Liu, Z.-J., Song, C.-L., 2016. Incorporating simvastatin/poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth. Biofabrication 8, 045012. https://doi.org/10.1088/1758-5090/8/4/045012
Luan, H., Wang, L., Ren, W., Chu, Z., Huang, Y., Lu, C., Fan, Y., 2019. The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits. Sci. China Technol. Sci. 62, 1160-1168. https://doi.org/10.1007/s11431-018-9352-8
Lv, J., Xiu, P., Tan, J., Jia, Z., Cai, H., Liu, Z., 2015. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue. Biomed. Mater. 10, 035013. https://doi.org/10.1088/1748-6041/10/3/035013
McGilvray, K.C., Easley, J., Seim, H.B., Regan, D., Berven, S.H., Hsu, W.K., Mroz, T.E., Puttlitz, C.M., 2018. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 18, 1250-1260. https://doi.org/10.1016/j.spinee.2018.02.018
Mróz, W., Budner, B., Syroka, R., Niedzielski, K., Golanski, G., Slósarczyk, A., Schwarze, D., Douglas, T.E.L., 2015. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion: Pulsed Laser Deposition of Mg-Enriched Ceramic Layers on Porous Ti6Al4V. J. Biomed. Mater. Res. B Appl. Biomater. 103, 151-158. https://doi.org/10.1002/jbm.b.33170
Mumith, A., Cheong, V.S., Fromme, P., Coathup, M.J., Blunn, G.W., 2020. The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implan ts. PLOS ONE 15, e0227232. https://doi.org/10.1371/journal.pone.0227232
Palmquist, A., Snis, A., Emanuelsson, L., Browne, M., Thomsen, P., 2013. Long-term biocompatibility and osseointegration of EBM, free-form-fabricated solid and porous Ti alloy: Experimental studies in sheep. J. Biomater. Appl. 27, 1003-1016. https://doi.org/10.1177/0731684411431857
Pedemonte, F. A., Machain V. A., Galli, M., Maggini, J. N., Graf S., Bosio V. E., 3D Printed Biomechanically Optimized Metal Scaffolds for Bone Regeneration. A Pilot Study, 2020. Rev. Arg. Bioingeniería.
Pobloth, A.-M., Checa, S., Razi, H., Petersen, A., Weaver, J.C., Schmidt-Bleek, K., Windolf, M., Tatai, A.Á., Roth, C.P., Schaser, K.-D., Duda, G.N., Schwabe, P., 2018. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci. Transl. Med. 10, eaam8828. https://doi.org/10.1126/scitranslmed.aam8828
Ran, Q., Yang, W., Hu, Y., Shen, X., Yu, Y., Xiang, Y., Cai, K., 2018. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J. Mech. Behav. Biomed. Mater. 84, 1-11. https://doi.org/10.1016/j.jmbbm.2018.04.010
Roffi, A., Krishnakumar, G.S., Gostynska, N., Kon, E., Candrian, C., Filardo, G., 2017. The Role of 3D Scaffolds in Treating Long Bone Defects: Evidence from Preclinical and Clinical Literature-A Systematic Review. BioMed Res. Int. 2017, 1-13. https://doi.org/10.1155/2017/8074178
Room Ee1614, PO Box 2040, 3000CA Rotterdam, The Netherlands, Van Der Stok, J., Koolen, M., De Maat, M., Amin Yavari, S.,Alblas, J., Patka, P., Verhaar, J., Van Lieshout, E., Zadpoor, A., Weinans, H., Jahr, H., 2015. Full regeneration of segmenta l bone defects using porous Ti implants loaded with BMP-2 containing fibrin gels. Eur. Cell. Mater. 29, 141-154. https://doi.org/10.22203/eCM.v029a11
Shah, F.A., Snis, A., Matic, A., Thomsen, P., Palmquist, A., 2016. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 30, 357-367. https://doi.org/10.1016/j.actbio.2015.11.013
Song, P., Hu, C., Pei, X., Sun, J., Sun, H., Wu, L., Jiang, Q., Fan, H., Yang, B., Zhou, C., Fan, Y., Zhang, X., 2019. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegrat ion. J. Mater. Chem. B 7, 2865-2877. https://doi.org/10.1039/C9TB00093C
Spece, H., Basgul, C., Andrews, C.E., MacDonald, D.W., Taheri, M.L., Kurtz, S.M., 2021. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. J. Biomed. Mater. Res. B Appl. Biomater. 109, 1436-1454. https://doi.org/10.1002/jbm.b.34803
Van Der Stok, J., Lozano, D., Chai, Y.C., Amin Yavari, S., Bastidas Coral, A.P., Verhaar, J.A.N., Gómez-Barrena, E., Schrooten, J., Jahr, H., Zadpoor, A.A., Esbrit, P., Weinans, H., 2015. Osteostatin-Coated Porous Titanium Can Improve Early Bone Regeneration of Cortical Bone Defects in Rats. Tissue Eng. Part A 21, 1495-1506. https://doi.org/10.1089/ten.tea.2014.0476
Van der Stok, J., Van der Jagt, O.P., Amin Yavari, S., De Haas, M.F.P., Waarsing, J.H., Jahr, H., Van Lieshout, E.M.M., Patka , P.,Verhaar, J.A.N., Zadpoor, A.A., Weinans, H., 2013. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 31, 792-799. https://doi.org/10.1002/jor.22293
Van Der Stok, J., Wang, H., Amin Yavari, S., Siebelt, M., Sandker, M., Waarsing, J.H., Verhaar, J.A.N., Jahr, H., Zadpoor, A.A., Leeuwenburgh, S.C.G., Weinans, H., 2013. Enhanced Bone Regeneration of Cortical Segmental Bone Defects Using Porous Titanium Scaffolds Incorporated with Colloidal Gelatin Gels for Time- and Dose-Controlled Delivery of Dual Growth Factors. Tissue Eng. Part A 19, 2605-2614. https://doi.org/10.1089/ten.tea.2013.0181
Vlad, M.D., Fernández Aguado, E., Gómez González, S., Ivanov, I.C., Sindilar, E.V., Poeata, I., Iencean, A.S., Butnaru, M., Avadanei, E.R., López López, J., 2020. Novel titanium-apatite hybrid scaffolds with spongy bone-like micro architecture intended for spinal application: In vitro and in vivo study. Mater. Sci. Eng. https://doi.org/10.1016/j.msec.2020.110658
Walsh, W.R., Pelletier, M.H., Wang, T., Lovric, V., Morberg, P., Mobbs, R.J., 2019. Does implantation site influence bone ing rowth into 3D-printed porous implants? Spine J. 19, 1885-1898. https://doi.org/10.1016/j.spinee.2019.06.020
Wang, H., Su, K., Su, L., Liang, P., Ji, P., Wang, C., 2019. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater. Sci. Eng. C 104, 109908. https://doi.org/10.1016/j.msec.2019.109908
Wang, H., Su, K., Su, L., Liang, P., Ji, P., Wang, C., 2018. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: A biomechanical eval. J. Mech. Behav. Biomed. Mater. 88, 488-496. https://doi.org/10.1016/j.jmbbm.2018.08.049
Wieding, J., Lindner, T., Bergschmidt, P., Bader, R., 2015. Biomechanical stability of novel mechanically adapted open -porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials 46, 35-47. https://doi.org/10.1016/j.biomaterials.2014.12.010
Wu, S., Li, Y., Zhang, Y., Li, X., Yuan, C., Hao, Y., Zhang, Z., Guo, Z., 2013. Porous Ti6Al4V Cage Has Better Osseointegration and Less Micromotion Than a Poly-Ether-Ether-Ketone Cage in Sheep Vertebral Fusion. Artif. Organs 37. https://doi.org/10.1111/aor.12153
Xiu, P., Jia, Z., Lv, J., Yin, C., Cai, H., Song, C., Leng, H., Zheng, Y., Liu, Z., Cheng, Y., 2017. Hierarchical Micropore/Nanorod Apatite Hybrids In-Situ Grown from 3-D Printed Macroporous Ti6Al4V Implants with Improved Bioactivity and Osseointegration. J. Mater. Sci. Technol. 33, 179-186. https://doi.org/10.1016/j.jmst.2016.05.013
Yin, B., Ma, P., Chen, J., Wang, H., Wu, G., Li, B., Li, Q., Huang, Z., Qiu, G., Wu, Z., 2016. Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration. Int. J. Mol. Sci. 17, 575. https://doi.org/10.3390/ijms17040575
Yin, B., Xue, B., Wu, Z., Ma, J., Wang, K., n.d. A novel hybrid 3D-printed titanium scaffold for osteogenesis in a rabbit calvarial defect model.
Zhang, B., Feng, J., Chen, S., Liao, R., Zhang, C., Luo, X., Yang, Z., Xiao, D., He, K., Duan, K., 2023. Cell response and bo ne ingrowth to 3D printed Ti6Al4V scaffolds with Mg-incorporating sol-gel Ta2O5 coating. RSC Adv. 13, 33053-33060. https://doi.org/10.1039/D3RA05814J
Zhang, T., Wei, Q., Fan, D., Liu, X., Li, W., Song, C., Cai, H., Zheng, Y., Liu, Z., 2020. Improved osseoint . with rhBMP-2 intraop. loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant. Biomater. Sci. 8, 1279-1289. https://doi.org/10.1039/C9BM01655D
Zhang, W., Sun, C., Zhu, J., Zhang, Weifang, Leng, H., Song, C., 2020. 3D printed porous titanium cages filled with simvastat in hydrogel promotes bone ingrowth and spinal fusion in rhesus macaques. Biomater. Sci. 8, 4147-4156. https://doi.org/10.1039/D0BM00361A
Zhong, W., Li, J., Hu, C., Quan, Z., Jiang, D., Huang, G., Wang, Z., 2020. 3D-printed titanium implant-coated polydopamine for repairing femoral condyle defects in rabbits. J. Orthop. Surg. 15, 102. https://doi.org/10.1186/s13018-020-01593-x
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.