Integration of the Self-Consistent Visco-Plastic Model with Laws under Creep Irradiation and Growth in the Finite Element Code Aster

Authors

  • Fabrizio E. Aguzzi Llubel Instituto de Física de Rosario (CONICET-Universidad Nacional de Rosario). Rosario, Argentina.
  • Javier W. Signorelli Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura & Instituto de Física de Rosario (CONICET-Universidad Nacional de Rosario). Rosario, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i26.133

Keywords:

Creep and Irradiation Growth, Polycrystalline Material, Anisotropy, Microstructure, UserMATerial (UMAT), Finite Elements

Abstract

The integration of the self-consistent viscoplastic polycrystalline (VPSC) model into the finite element (FE) framework using the Code Aster software is presented. This model incorporates creep and growth laws under irradiation in a single crystal. A local coordinate system is defined at each integration point of the finite elements, considering a polycrystal with initial texture. The VPSC-FE interface, built with the UMAT subroutine, enables communication between meso and macroscopic scales; although the VPSC model only resolves viscoplastic deformation for a stress state, the interface incorporates macroscopic elastic deformation. The resulting integration simulates the mechanical response of a quarter Zircaloy-2 cladding tube, first under internal pressure and then under uniaxial tension during irradiation, evaluating texture effects and accuracy with respect to the standalone VPSC model.

References

Barashev A.V., Golubov S., and Stoller R.E., Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation. J. Nucl. Mater. 461 (2015), pp. 85-94. https://doi.org/10.1016/j.jnucmat.2015.02.001

BISON Code Documentation, Idaho National Laboratory (July 2020)

Brailsford A. D. y Bullough R., The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater., 44, 1972, pp. 121-135. https://doi.org/10.1016/0022-3115(72)90091-8

Causey A.R., Woo C.H., Holt R.A., The effect of intergranular stress on the texture dependence of irradiation growth in zirconium alloys. J. Nucl. Mater. 159, 1988, pp. 225-236 https://doi.org/10.1016/0022-3115(88)90095-5

Code Aster Open Source, General FEA Software.

Chung I., 2016, A study on the constitutive modelo f irradiated austenitic stainless steel for the functionality análisis of nuclear internals. J Mech Sci Technol 30, 1573-1580. https://doi.org/10.1007/s12206-016-0312-5

Ehrlich, K., Irradiation creep and interrelation with swelling in austenitic stainless steels. J. Nucl. Mater. 100 (1-3) (1981), 149-166. Fidleris V., 1998. The irradiation creep and growth phenomena. J. Nucl. Mater. 159,22-42. https://doi.org/10.1016/0022-3115(81)90531-6

Franklin D.G., Lucas G.E., Bement A.L, Creep of zirconium alloys in nuclear reactors. STP 815, ASTM, Philadelphia, PA, 1983. https://doi.org/10.1520/STP815-EB

Golubov S.I., Barashev A.V., and Stoller R.E., On the origin of radiation growth of hcp crystals.

ORNL/TM-2011/473, Oak Ridge, TN, ORNL/TM-2011/473, Oak Ridge National Laboratory, 2011.

Knezevic M., et al. 2013. Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals.J. Mech. Phys. Solids 61 (10), 2034-2046. https://doi.org/10.1016/j.jmps.2013.05.005

Kocks, U.F., Tomé, C., Wenk, H.-R.,2000. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press.

Lebensohn, R.A., Tomé, C.N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconiuom alloys.Acta Metall. Mater. (1993) 41(9),2611-2624. https://doi.org/10.1016/0956-7151(93)90130-K

Lhuillier D., Tomé C, 1995. Modeling of irradiation and thermal creep of pressure tubes: 1. Texture reduction and interpolation. Atomic Energy of Canada Ltd., COG-94-232 RC-1222.

Liu W., Montgomery R., Tomé C., Stanek C., Hales J. 2014. Demonstration of Atomisticallyinformed Multiscale Zr Alloy Deformation Models in Peregrine for Normal and Accident Scenarios. CASL-U-2014-201-000

Liu W., Montgomery R., Tomé C., Stanek C., Hales J. 2015. VPSC implementation in the BISON-CASL code for modeling large deformation problems. In ANS MC2015 Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, TN. Pp. 1-15.

Nolan D.R., Lally C., McGarry J.P., Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs). journal of the mechanical behavior of biomedical materials 126 (2022) 104940. https://doi.org/10.1016/j.jmbbm.2021.104940

Norgett, M.J., Robinson, M.T., Torrens, I.M., 1975. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33 (1), 50-54. https://doi.org/10.1016/0029-5493(75)90035-7

Patra A., Tomé C. y Goluvob S., Crystal plasticity modeling of irradiation growth in Zircaloy-2. PhilosoPhical Magazine, 2017. https://doi.org/10.1080/14786435.2017.1324648

Patra A., Tomé C. 2017. Finite element simulation of gap opening between cladding tuve and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nuclear Engineering and Design 315 (2017) 155-169. https://doi.org/10.1016/j.nucengdes.2017.02.029

Segurado J., Lebensohn R.A, Llorca J., Tomé C. 2012. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int. J. Plast. 28 (1), 124-140. https://doi.org/10.1016/j.ijplas.2011.07.002

Simmons G., Wang H., 1971. Single Crystal Elastic Constants and Calculated Aggregate Properties. Cambridge University Press.

Singh, B.N., Eldrup, M., Zinkle, S.J., Golubov, S.I., 2002. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons. Philos. Mag. A 82 (6),1137-1158. https://doi.org/10.1080/01418610110098785

Tomé, C.N et al., 1996. Role of internal stresses in the transient of irradiation growth of Zircaloy-2. J. Nucl. Mater. 227 (3), 237-250. https://doi.org/10.1016/0022-3115(95)00140-9

Tomé, C.N., So, C.B., Woo, C.H., 1993. Self-consistent calculation of steady-state creep and growth in textured zirconium. Philos. Mag. A 67 (4), 917-930. https://doi.org/10.1080/01418619308213968

Turner, P.A., Tomé, C.N., 1993. Self-consistent modeling of visco-elastic polycrystals: application to irradiation creep and growth. J. Mech. Phys. Solids 41 (7), 1191-1211. https://doi.org/10.1016/0022-5096(93)90090-3

Turner, P.A., Tomé, C.N., Christodoulou, N., Woo, C.H., 1999. A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos.Mag. A 79 (10), 2505-2524. https://doi.org/10.1080/01418619908214296A 79 (10), 2505–2524.

Published

2024-11-08