Integración del Modelo Visco-Plástico Autoconsistente con Leyes bajo Irradiación de Creep y Crecimiento en el Código de Elementos Finitos Code Aster
DOI:
https://doi.org/10.70567/mc.v41i26.133Palavras-chave:
Creep y Crecimiento bajo irradiación, Material Policristalino, Anisotropía, Microestructura, UserMATerial (UMAT), Elementos FinitosResumo
Se presenta la integración del modelo policristalino viscoplástico autoconsistente (VPSC) en el marco de elementos finitos (FE), usando el software Code Aster. Este modelo incorpora las leyes de creep y crecimiento bajo irradiación en un cristal simple. En cada punto de integración de los elementos finitos se define un sistema de coordenadas local, considerando un policristal con textura inicial. La interfaz VPSC-FE, construida con la subrutina UMAT, permite la comunicación entre escalas meso y macroscópica; aunque el modelo VPSC solo resuelve la deformación viscoplástica para un estado de tensiones, la interfaz incorpora la deformación elástica macroscópica. La integración resultante simula la respuesta mecánica de un cuarto de tubo de revestimiento de Zircaloy-2, primero bajo presión interna y luego solo a tracción bajo irradiación, evaluando efectos de textura y precisión respecto al modelo VPSC independiente.
Referências
Barashev A.V., Golubov S., and Stoller R.E., Theoretical investigation of microstructure evolution and deformation of zirconium under neutron irradiation. J. Nucl. Mater. 461 (2015), pp. 85-94. https://doi.org/10.1016/j.jnucmat.2015.02.001
BISON Code Documentation, Idaho National Laboratory (July 2020)
Brailsford A. D. y Bullough R., The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater., 44, 1972, pp. 121-135. https://doi.org/10.1016/0022-3115(72)90091-8
Causey A.R., Woo C.H., Holt R.A., The effect of intergranular stress on the texture dependence of irradiation growth in zirconium alloys. J. Nucl. Mater. 159, 1988, pp. 225-236 https://doi.org/10.1016/0022-3115(88)90095-5
Code Aster Open Source, General FEA Software.
Chung I., 2016, A study on the constitutive modelo f irradiated austenitic stainless steel for the functionality análisis of nuclear internals. J Mech Sci Technol 30, 1573-1580. https://doi.org/10.1007/s12206-016-0312-5
Ehrlich, K., Irradiation creep and interrelation with swelling in austenitic stainless steels. J. Nucl. Mater. 100 (1-3) (1981), 149-166. Fidleris V., 1998. The irradiation creep and growth phenomena. J. Nucl. Mater. 159,22-42. https://doi.org/10.1016/0022-3115(81)90531-6
Franklin D.G., Lucas G.E., Bement A.L, Creep of zirconium alloys in nuclear reactors. STP 815, ASTM, Philadelphia, PA, 1983. https://doi.org/10.1520/STP815-EB
Golubov S.I., Barashev A.V., and Stoller R.E., On the origin of radiation growth of hcp crystals.
ORNL/TM-2011/473, Oak Ridge, TN, ORNL/TM-2011/473, Oak Ridge National Laboratory, 2011.
Knezevic M., et al. 2013. Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: application to low-symmetry metals.J. Mech. Phys. Solids 61 (10), 2034-2046. https://doi.org/10.1016/j.jmps.2013.05.005
Kocks, U.F., Tomé, C., Wenk, H.-R.,2000. Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties. Cambridge University Press.
Lebensohn, R.A., Tomé, C.N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconiuom alloys.Acta Metall. Mater. (1993) 41(9),2611-2624. https://doi.org/10.1016/0956-7151(93)90130-K
Lhuillier D., Tomé C, 1995. Modeling of irradiation and thermal creep of pressure tubes: 1. Texture reduction and interpolation. Atomic Energy of Canada Ltd., COG-94-232 RC-1222.
Liu W., Montgomery R., Tomé C., Stanek C., Hales J. 2014. Demonstration of Atomisticallyinformed Multiscale Zr Alloy Deformation Models in Peregrine for Normal and Accident Scenarios. CASL-U-2014-201-000
Liu W., Montgomery R., Tomé C., Stanek C., Hales J. 2015. VPSC implementation in the BISON-CASL code for modeling large deformation problems. In ANS MC2015 Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, TN. Pp. 1-15.
Nolan D.R., Lally C., McGarry J.P., Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs). journal of the mechanical behavior of biomedical materials 126 (2022) 104940. https://doi.org/10.1016/j.jmbbm.2021.104940
Norgett, M.J., Robinson, M.T., Torrens, I.M., 1975. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33 (1), 50-54. https://doi.org/10.1016/0029-5493(75)90035-7
Patra A., Tomé C. y Goluvob S., Crystal plasticity modeling of irradiation growth in Zircaloy-2. PhilosoPhical Magazine, 2017. https://doi.org/10.1080/14786435.2017.1324648
Patra A., Tomé C. 2017. Finite element simulation of gap opening between cladding tuve and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nuclear Engineering and Design 315 (2017) 155-169. https://doi.org/10.1016/j.nucengdes.2017.02.029
Segurado J., Lebensohn R.A, Llorca J., Tomé C. 2012. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int. J. Plast. 28 (1), 124-140. https://doi.org/10.1016/j.ijplas.2011.07.002
Simmons G., Wang H., 1971. Single Crystal Elastic Constants and Calculated Aggregate Properties. Cambridge University Press.
Singh, B.N., Eldrup, M., Zinkle, S.J., Golubov, S.I., 2002. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons. Philos. Mag. A 82 (6),1137-1158. https://doi.org/10.1080/01418610110098785
Tomé, C.N et al., 1996. Role of internal stresses in the transient of irradiation growth of Zircaloy-2. J. Nucl. Mater. 227 (3), 237-250. https://doi.org/10.1016/0022-3115(95)00140-9
Tomé, C.N., So, C.B., Woo, C.H., 1993. Self-consistent calculation of steady-state creep and growth in textured zirconium. Philos. Mag. A 67 (4), 917-930. https://doi.org/10.1080/01418619308213968
Turner, P.A., Tomé, C.N., 1993. Self-consistent modeling of visco-elastic polycrystals: application to irradiation creep and growth. J. Mech. Phys. Solids 41 (7), 1191-1211. https://doi.org/10.1016/0022-5096(93)90090-3
Turner, P.A., Tomé, C.N., Christodoulou, N., Woo, C.H., 1999. A self-consistent model for polycrystals undergoing simultaneous irradiation and thermal creep. Philos.Mag. A 79 (10), 2505-2524. https://doi.org/10.1080/01418619908214296A 79 (10), 2505–2524.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Asociación Argentina de Mecánica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.