Influence of Turbulence Model on the Form Factor Determination of Fishing Vessels
DOI:
https://doi.org/10.70567/mc.v42.ocsid8247Palabras clave:
Turbulence, form factor, CFD, OpenFOAM, RANS models, viscous resistanceResumen
Turbulence modelling remains one of the main sources of uncertainty in CFD, particularly in ship hydrodynamics. To avoid the high computational cost of resolving turbulent fluctuations directly, it is standard practice to apply averaging methods and focus on mean flow behavior. This introduces a closure problem in the governing equations, which is typically addressed using two-equation eddy-viscosity models. In this study, three widely used turbulence models — k-epsilon, k-omega, and k-omega SST — were employed in single-phase simulations to evaluate their influence on the determination of the form factor of ship hulls. Each model was applied to the same set of case studiesto assess the sensitivity of the form factor to turbulence modeling and to analyze how this sensitivityvaries with Reynolds number in low length-to-beam ratio fishing vessels. This work is part of a broader study on scale effects in power prediction for fishing vessels.
Citas
26th ITTC Resistance Committee. ITTC – Recommended Procedures and Guidelines - Resistance Test. ITTC, 2011.
28th ITTC Resistance Comittee. ITTC, 2017. Uncertainty analysis in cfd verification and validation, methodology and procedures. ITTC - Quality System Manual Recommended Procedures and Guidelines 7, 5-03-01-01. ITTC, 2017.
Durbin P.A. and Reif B.P. Statistical theory and modeling for turbulent flows. John Wiley & Sons, 2011.
Ferziger J.H. and Springer M.P. Computational methods for fluid dynamics: Third edition. Computers & Mathematics with Applications, 46(2):503–504, 2003. ISSN 0898-1221. http://doi.org/https://doi.org/10.1016/S0898-1221(03)90046-0.
Froude W. On experiments with h.m.s. greyhound. Transactions of the Royal Institution of Naval Architects, 15:36–73, 1874.
Hughes G. Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. National Physical Laboratory, NPL, Ship Division, Presented at the Institution of Naval Architects, Paper No. 7, London, April, RINA Transactions 1954-16, 1954.
Karim M., Rahman M., and Alim M.A. Performance of sst k-? turbulence model for computation of viscous drag of axisymmetric underwater bodies. International Journal of Engineering, 24, 2011.
Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. http://doi.org/10.2514/3.12149.
Oyuela S., Ojeda H.R.D., Arribas F.P., Otero A.D., and Sosa R. Investigating fishing vessel hydrodynamics by using efd and cfd tools, with focus on total ship resistance and its components. Journal of Marine Science and Engineering, 12(4), 2024. ISSN 2077-1312. http://doi.org/10.3390/jmse12040622.
Specialist Committee: Procedures for Resistance P. and of 23rd ITTC 2002 P.O.W.T. ITTC – Recommended Procedures and Guidelines: Model Manufacture, Ship Models. ITTC, 2002.
Terziev M., Tezdogan T., Demirel Y.K., Villa D., Mizzi S., and Incecik A. Exploring the effects of speed and scale on a ship’s form factor using cfd. International Journal of Naval Architecture and Ocean Engineering, 13:147–162, 2021. ISSN 2092-6782. http://doi.org/https://doi.org/10.1016/j.ijnaoe.2020.12.002.
Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., La Cañada, California, 3 edition, 2006.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.

