Influence of Turbulence Model on the Form Factor Determination of Fishing Vessels

Authors

  • Sebastián Oyuela Universidad de Buenos Aires, Facultad de Ingeniería. Ciudad Autónoma de Buenos Aires, Argentina. https://orcid.org/0000-0001-5580-4434
  • Héctor R. Diaz Ojeda Universidad de Las Palmas de Gran Canaria, Campus de Tafira. Las Palmas de Gran Canaria, España. https://orcid.org/0000-0001-8045-0156
  • Alejandro D. Otero Universidad de Buenos Aires, Facultad de Ingeniería & CONICET, Centro de Simulación Computacional para Aplicaciones Tecnológicas. Ciudad Autónoma de Buenos Aires, Argentina. https://orcid.org/0000-0003-1443-3774
  • Roberto Sosa Universidad de Buenos Aires, Facultad de Ingeniería. & CONICET - Universidad de Buenos Aires, Laboratorio de Ingeniería Naval y Oceánica (LabHiNO), Instituto de Tecnologías y Ciencias de la Ingeniería “Hilario Fernández Long” (INTECIN). Ciudad Autónoma de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8247

Keywords:

Turbulence, form factor, CFD, OpenFOAM, RANS models, viscous resistance

Abstract

Turbulence modelling remains one of the main sources of uncertainty in CFD, particularly in ship hydrodynamics. To avoid the high computational cost of resolving turbulent fluctuations directly, it is standard practice to apply averaging methods and focus on mean flow behavior. This introduces a closure problem in the governing equations, which is typically addressed using two-equation eddy-viscosity models. In this study, three widely used turbulence models — k-epsilon, k-omega, and k-omega SST — were employed in single-phase simulations to evaluate their influence on the determination of the form factor of ship hulls. Each model was applied to the same set of case studiesto assess the sensitivity of the form factor to turbulence modeling and to analyze how this sensitivityvaries with Reynolds number in low length-to-beam ratio fishing vessels. This work is part of a broader study on scale effects in power prediction for fishing vessels.

References

26th ITTC Resistance Committee. ITTC – Recommended Procedures and Guidelines - Resistance Test. ITTC, 2011.

28th ITTC Resistance Comittee. ITTC, 2017. Uncertainty analysis in cfd verification and validation, methodology and procedures. ITTC - Quality System Manual Recommended Procedures and Guidelines 7, 5-03-01-01. ITTC, 2017.

Durbin P.A. and Reif B.P. Statistical theory and modeling for turbulent flows. John Wiley & Sons, 2011.

Ferziger J.H. and Springer M.P. Computational methods for fluid dynamics: Third edition. Computers & Mathematics with Applications, 46(2):503–504, 2003. ISSN 0898-1221. http://doi.org/https://doi.org/10.1016/S0898-1221(03)90046-0.

Froude W. On experiments with h.m.s. greyhound. Transactions of the Royal Institution of Naval Architects, 15:36–73, 1874.

Hughes G. Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. National Physical Laboratory, NPL, Ship Division, Presented at the Institution of Naval Architects, Paper No. 7, London, April, RINA Transactions 1954-16, 1954.

Karim M., Rahman M., and Alim M.A. Performance of sst k-? turbulence model for computation of viscous drag of axisymmetric underwater bodies. International Journal of Engineering, 24, 2011.

Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994. http://doi.org/10.2514/3.12149.

Oyuela S., Ojeda H.R.D., Arribas F.P., Otero A.D., and Sosa R. Investigating fishing vessel hydrodynamics by using efd and cfd tools, with focus on total ship resistance and its components. Journal of Marine Science and Engineering, 12(4), 2024. ISSN 2077-1312. http://doi.org/10.3390/jmse12040622.

Specialist Committee: Procedures for Resistance P. and of 23rd ITTC 2002 P.O.W.T. ITTC – Recommended Procedures and Guidelines: Model Manufacture, Ship Models. ITTC, 2002.

Terziev M., Tezdogan T., Demirel Y.K., Villa D., Mizzi S., and Incecik A. Exploring the effects of speed and scale on a ship’s form factor using cfd. International Journal of Naval Architecture and Ocean Engineering, 13:147–162, 2021. ISSN 2092-6782. http://doi.org/https://doi.org/10.1016/j.ijnaoe.2020.12.002.

Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., La Cañada, California, 3 edition, 2006.

Downloads

Published

2025-11-30

Issue

Section

Conference Papers in MECOM 2025