Magnetostática por Volumenes Finitos en Mallas No-Ortogonales

Autores/as

  • Augusto Riedinger CONICET-Universidad Tecnológica Nacional, Centro de Investigación en Mecánica Teórica y Aplicada. Bahía Blanca, Argentina.
  • Martín Saravia CONICET-Universidad Tecnológica Nacional, Centro de Investigación en Mecánica Teórica y Aplicada. Bahía Blanca, Argentina.
  • José Ramírez CONICET-Universidad Tecnológica Nacional, Centro de Investigación en Mecánica Teórica y Aplicada. Bahía Blanca, Argentina.
  • Santiago Osinaga CONICET-Universidad Nacional de la Patagonia San Juan Bosco, Laboratorio de Mecanica de Fluidos. Comodoro Rivadavia, Argentina.

DOI:

https://doi.org/10.70567/mc.v42.ocsid8458

Palabras clave:

OpenFOAM, Método de Volumenes Finitos, Magnetostatica, Métodos numéricos

Resumen

Se presenta un desarrollo según el Método de Volúmenes Finitos para resolver problemas magnetostáticos en mallas no ortogonales. El esquema conserva de forma el flujo magnético en interfaces, alcanza segundo orden de precisión en mallas distorsionadas y asegura convergencia estable en me- dios de alta permeabilidad. Las comparaciones con elementos finitos muestran similar exactitud con menor costo computacional. Estudios de convergencia y pruebas con soluciones manufacturadas confirman la robustez del enfoque, que se plantea como una alternativa a los métodos clásicos en aplicaciones industriales.

Citas

Ciarlet P.G. y Raviart P.A. Interpolation theory over curved elements, with applications to finite

element methods. Computer Methods in Applied Mechanics and Engineering, 1(2):217–249,

1972.

Eça L. y Hoekstra M. A procedure for the estimation of the numerical uncertainty of cfd

calculations based on grid refinement studies. Journal of computational physics, 262:104–

130, 2014.

Gangl P., Langer U., Laurain A., Meftahi H., y Sturm K. Shape optimization of an electric motorsubject to nonlinear magnetostatics. SIAM Journal on Scientific Computing, 37(6):B1002–

B1025, 2015.

Giovannetti G., Viti V., Positano V., Santarelli M.F., Landini L., y Benassi A. Magnetostatic

simulation for accurate design of low field mri phased-array coils. Concepts in Magnetic

Resonance Part B: Magnetic Resonance Engineering: An Educational Journal, 31(3):140–

146, 2007.

Haber E. y Ruthotto L. A multiscale finite volume method for maxwell’s equations at low frequencies. Geophysical Journal International, 199(2):1268–1277, 2014.

Jorge C.A.F., Jospin R.J., y Furlanetto J.A. Particle trajectory tracing and computational electromagnetics for accelerator and related technologies. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 6(1):278–294, 2007.

Marchand R. y Davidson D.B. The method of manufactured solutions for the verification of computational electromagnetics. En 2011 International Conference on Electromagnetics in Advanced Applications, páginas 487–490. IEEE, 2011.

Moukalled F., Mangani L., Darwish M., Moukalled F., Mangani L., y Darwish M. The finite volume method. Springer, 2016.

Riedinger A. y Saravia M. A single–region finite volume framework for modeling discontinuous magnetic field distributions. Computers & Structures, 277:106960, 2023.

Roache P.J. Code verification by the method of manufactured solutions. J. Fluids Eng., 124(1):4–10, 2002.

Sabbagh-Yazdi S., Ali-Mohammadi S., y Pipelzadeh M. Unstructured finite volume method for matrix free explicit solution of stress–strain fields in two dimensional problems with curved boundaries in equilibrium condition. Applied Mathematical Modelling, 36(5):2224–2236, 2012.

Saravia C.M. A formulation for modeling levitation based vibration energy harvesters undergoing finite motion. Mechanical Systems and Signal Processing, 117:862–878, 2019.

Saravia C.M. On the electromechanical coupling in electromagnetic vibration energy harvesters. Mechanical Systems and Signal Processing, 136:106027, 2020.

Saravia C.M., Ramírez J.M., y Gatti C.D. A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sensors and Actuators A: Physical, 257:20–29, 2017.

Saravia M. A finite volume formulation for magnetostatics of discontinuous media within a multi-region openfoam framework. Journal of Computational Physics, 433:110089, 2021.

Sevilla R., Fernández-Méndez S., y Huerta A. Comparison of high-order curved finite elements. International Journal for Numerical Methods in Engineering, 87(8):719–734, 2011.

Shekaramiz M., Fathi S., Ataabadi H.A., Kazemi-Varnamkhasti H., y Toghraie D. Mhd nanofluid free convection inside the wavy triangular cavity considering periodic temperature boundary condition and velocity slip mechanisms. International Journal of Thermal Sciences, 170:107179, 2021.

Toghraie D. Numerical simulation on mhd mixed convection of cu-water nanofluid in a trapezoidal lid-driven cavity. International Journal of Applied Electromagnetics and Mechanics, 62(4):683–710, 2020.

Descargas

Publicado

2025-12-03

Número

Sección

Artículos completos del congreso MECOM 2025