Magnetostática por Volumenes Finitos en Mallas No-Ortogonales
DOI:
https://doi.org/10.70567/mc.v42.ocsid8458Palavras-chave:
OpenFOAM, Método de Volumenes Finitos, Magnetostatica, Métodos numéricosResumo
Se presenta un desarrollo según el Método de Volúmenes Finitos para resolver problemas magnetostáticos en mallas no ortogonales. El esquema conserva de forma el flujo magnético en interfaces, alcanza segundo orden de precisión en mallas distorsionadas y asegura convergencia estable en me- dios de alta permeabilidad. Las comparaciones con elementos finitos muestran similar exactitud con menor costo computacional. Estudios de convergencia y pruebas con soluciones manufacturadas confirman la robustez del enfoque, que se plantea como una alternativa a los métodos clásicos en aplicaciones industriales.
Referências
Ciarlet P.G. y Raviart P.A. Interpolation theory over curved elements, with applications to finite
element methods. Computer Methods in Applied Mechanics and Engineering, 1(2):217–249,
1972.
Eça L. y Hoekstra M. A procedure for the estimation of the numerical uncertainty of cfd
calculations based on grid refinement studies. Journal of computational physics, 262:104–
130, 2014.
Gangl P., Langer U., Laurain A., Meftahi H., y Sturm K. Shape optimization of an electric motorsubject to nonlinear magnetostatics. SIAM Journal on Scientific Computing, 37(6):B1002–
B1025, 2015.
Giovannetti G., Viti V., Positano V., Santarelli M.F., Landini L., y Benassi A. Magnetostatic
simulation for accurate design of low field mri phased-array coils. Concepts in Magnetic
Resonance Part B: Magnetic Resonance Engineering: An Educational Journal, 31(3):140–
146, 2007.
Haber E. y Ruthotto L. A multiscale finite volume method for maxwell’s equations at low frequencies. Geophysical Journal International, 199(2):1268–1277, 2014.
Jorge C.A.F., Jospin R.J., y Furlanetto J.A. Particle trajectory tracing and computational electromagnetics for accelerator and related technologies. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 6(1):278–294, 2007.
Marchand R. y Davidson D.B. The method of manufactured solutions for the verification of computational electromagnetics. En 2011 International Conference on Electromagnetics in Advanced Applications, páginas 487–490. IEEE, 2011.
Moukalled F., Mangani L., Darwish M., Moukalled F., Mangani L., y Darwish M. The finite volume method. Springer, 2016.
Riedinger A. y Saravia M. A single–region finite volume framework for modeling discontinuous magnetic field distributions. Computers & Structures, 277:106960, 2023.
Roache P.J. Code verification by the method of manufactured solutions. J. Fluids Eng., 124(1):4–10, 2002.
Sabbagh-Yazdi S., Ali-Mohammadi S., y Pipelzadeh M. Unstructured finite volume method for matrix free explicit solution of stress–strain fields in two dimensional problems with curved boundaries in equilibrium condition. Applied Mathematical Modelling, 36(5):2224–2236, 2012.
Saravia C.M. A formulation for modeling levitation based vibration energy harvesters undergoing finite motion. Mechanical Systems and Signal Processing, 117:862–878, 2019.
Saravia C.M. On the electromechanical coupling in electromagnetic vibration energy harvesters. Mechanical Systems and Signal Processing, 136:106027, 2020.
Saravia C.M., Ramírez J.M., y Gatti C.D. A hybrid numerical-analytical approach for modeling levitation based vibration energy harvesters. Sensors and Actuators A: Physical, 257:20–29, 2017.
Saravia M. A finite volume formulation for magnetostatics of discontinuous media within a multi-region openfoam framework. Journal of Computational Physics, 433:110089, 2021.
Sevilla R., Fernández-Méndez S., y Huerta A. Comparison of high-order curved finite elements. International Journal for Numerical Methods in Engineering, 87(8):719–734, 2011.
Shekaramiz M., Fathi S., Ataabadi H.A., Kazemi-Varnamkhasti H., y Toghraie D. Mhd nanofluid free convection inside the wavy triangular cavity considering periodic temperature boundary condition and velocity slip mechanisms. International Journal of Thermal Sciences, 170:107179, 2021.
Toghraie D. Numerical simulation on mhd mixed convection of cu-water nanofluid in a trapezoidal lid-driven cavity. International Journal of Applied Electromagnetics and Mechanics, 62(4):683–710, 2020.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Associação Argentina de Mecânica Computacional

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Esta publicação é de acesso aberto diamante, sem custos para autores ou leitores.
Somente os artigos que foram aceitos para publicação e apresentados no congresso da AMCA serão publicados.

