Análisis de Reducción de Fragilidad en Estructuras de Alta Frecuencia Mediante el Uso de Amortiguadores de Líquido Sintonizado
DOI:
https://doi.org/10.70567/mc.v41i8.41Palabras clave:
Control de vibraciones, Disipación suplementaria de energía, Amortiguadores de Líquido Sintonizado, Acción sísmica, Curva de fragilidadResumen
El uso de amortiguadores de líquido sintonizado se presenta como una alternativa atractiva para la reducción de la vulnerabilidad de estructuras civiles sometidas a la acción sísmica debido a su simpleza y practicidad en las etapas de fabricación, instalación y mantenimiento. Por otra parte, de manera reciente se ha realizado una propuesta de implementación, denominada Amortiguador de Líquido Sintonizado de Alta Frecuencia, que permite hacer que los dispositivos de control mencionados sean efectivos en estructuras de periodos bajos o dinámicamente rígidas. En el presente trabajo se evalúa de manera numérica la capacidad de este nuevo dispositivo para reducir la fragilidad de una estructura con frecuencia relativamente elevada mediante una serie de análisis sísmicos, demostrando la efectividad para controlar la respuesta dinámica de la estructura analizada.
Citas
ANSYS Inc. Ansys theory manual, release 18. 2018.
Baker J.W. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5):1486–1501, 2007. doi: 10.1785/0120060255.
Banerji P., Murudi M., Shah A.H., y Popplewell N. Tuned liquid dampers for controlling earthquake response of structures. Earthquake engineering & structural dynamics, 29(5):587–602, 2000.
Banerji P. y Samanta A. Earthquake vibration control of structures using hybrid mass liquid damper. Engineering Structures, 33(4):1291–1301, 2011. ISSN 0141-0296. doi:https://doi.org/10.1016/j.engstruct.2011.01.006.
Bessason B. y Bjarnason J.Ö. Seismic vulnerability of low-rise residential buildings based on damage data from three earthquakes (mw6. 5, 6.5 and 6.3). Engineering Structures, 111:64–79, 2016.
Chen J., Zhan G., y Zhao Y. Application of spherical tuned liquid damper in vibration control of wind turbine due to earthquake excitations. The Structural Design of Tall and SpecialBuildings, 25(10):431–443, 2016.
De Domenico D., Ricciardi G., y Takewaki I. Design strategies of viscous dampers for seismic protection of building structures: a review. Soil dynamics and earthquake engineering,
Di Sarno L. y Wu J.R. Fragility assessment of existing low-rise steel moment-resisting frames with masonry infills under mainshock-aftershock earthquake sequences. Bulletin of Earthquake Engineering, 19(6):2483–2504, 2021.
Domizio M., Ambrosini D., y Campi A. A novel tuned liquid damper for vibration control in high-frequency structures. Engineering Structures, 301:117350, 2024.
Ilki A., Karadogan F., Pala S., y Yuksel E. Seismic Risk Assessment and Retrofitting: With Special Emphasis on Existing Low Rise Structures, volumen 10. Springer Science & BusinessMedia, 2009.
Jafari M. y Alipour A. Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. Journal of Building Engineering, 33:101582, 2021.
Jaisee S., Yue F., y Ooi Y.H. A state-of-the-art review on passive friction dampers and their applications. Engineering Structures, 235:112022, 2021.
Javanmardi A., Ibrahim Z., Ghaedi K., Benisi Ghadim H., y Hanif M.U. State-of-the-art review of metallic dampers: testing, development and implementation. Archives of Computational Methods in Engineering, 27(2):455–478, 2020.
Konar T. y Ghosh A. A review on various configurations of the passive tuned liquid damper. Journal of Vibration and Control, página 10775463221074077, 2022.
Lee B.H., Chen C.C., Chen T.W., Shiao S.Y., Jiang C.R., y Yeh F.Y. Enhancement of structural seismic performance of low-rise buildings using displacement-dependent tuned mass damper.Structures, 37:1119–1128, 2022.
Lu Z., Wang Z., Zhou Y., y Lu X. Nonlinear dissipative devices in structural vibration control:A review. Journal of Sound and Vibration, 423:18–49, 2018. Pacific Earthquake Engineering Research Center. Peer ground motion database. https: //ngawest2.berkeley.edu, 2013. Accessed: 2024-09-13.
Pandey D.K., Sharma M.K., y Mishra S.K. A compliant tuned liquid damper for controlling seismic vibration of short period structures. Mechanical Systems and Signal Processing, 132:405–428, 2019.
Pandit A. y Biswal K. Seismic control of multi degree of freedom structure outfitted with sloped bottom tuned liquid damper. Structures, 25:229–240, 2020.Park J., Towashiraporn P., Craig J.I., y Goodno B.J. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures, 31(1):125–137, 2009.
Tang Z., Dong Y., Liu H., y Li Z. Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation. Journal of Building Engineering, 48:103910, 2022.
Vafaei M., Pabarja A., y Alih S.C. An innovative tuned liquid damper for vibration mitigation of structures. International Journal of Civil Engineering, 19(9):1071–1090, 2021.
Xie F. y Aly A.M. Structural control andANSYS Inc. Ansys theory manual, release 18. 2018.
Baker J.W. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5):1486-1501, 2007. doi: 10.1785/0120060255. https://doi.org/10.1785/0120060255
Banerji P., Murudi M., Shah A.H., y Popplewell N. Tuned liquid dampers for controlling earthquake response of structures. Earthquake engineering & structural dynamics, 29(5):587-602, 2000. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<587::AID-EQE926>3.0.CO;2-I
Banerji P. y Samanta A. Earthquake vibration control of structures using hybrid mass liquid damper. Engineering Structures, 33(4):1291-1301, 2011. ISSN 0141-0296. doi:https://doi.org/10.1016/j.engstruct.2011.01.006. https://doi.org/10.1016/j.engstruct.2011.01.006
Bessason B. y Bjarnason J.Ö. Seismic vulnerability of low-rise residential buildings based on damage data from three earthquakes (mw6. 5, 6.5 and 6.3). Engineering Structures, 111:64-79, 2016. https://doi.org/10.1016/j.engstruct.2015.12.008
Chen J., Zhan G., y Zhao Y. Application of spherical tuned liquid damper in vibration control of wind turbine due to earthquake excitations. The Structural Design of Tall and SpecialBuildings, 25(10):431-443, 2016. https://doi.org/10.1002/tal.1266
De Domenico D., Ricciardi G., y Takewaki I. Design strategies of viscous dampers for seismic protection of building structures: a review. Soil dynamics and earthquake engineering,
Di Sarno L. y Wu J.R. Fragility assessment of existing low-rise steel moment-resisting frames with masonry infills under mainshock-aftershock earthquake sequences. Bulletin of Earthquake Engineering, 19(6):2483-2504, 2021. https://doi.org/10.1007/s10518-021-01080-6
Domizio M., Ambrosini D., y Campi A. A novel tuned liquid damper for vibration control in high-frequency structures. Engineering Structures, 301:117350, 2024. https://doi.org/10.1016/j.engstruct.2023.117350
Ilki A., Karadogan F., Pala S., y Yuksel E. Seismic Risk Assessment and Retrofitting: With Special Emphasis on Existing Low Rise Structures, volumen 10. Springer Science & BusinessMedia, 2009. https://doi.org/10.1007/978-90-481-2681-1
Jafari M. y Alipour A. Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. Journal of Building Engineering, 33:101582, 2021. https://doi.org/10.1016/j.jobe.2020.101582
Jaisee S., Yue F., y Ooi Y.H. A state-of-the-art review on passive friction dampers and their applications. Engineering Structures, 235:112022, 2021. https://doi.org/10.1016/j.engstruct.2021.112022
Javanmardi A., Ibrahim Z., Ghaedi K., Benisi Ghadim H., y Hanif M.U. State-of-the-art review of metallic dampers: testing, development and implementation. Archives of Computational Methods in Engineering, 27(2):455-478, 2020. https://doi.org/10.1007/s11831-019-09329-9
Konar T. y Ghosh A. A review on various configurations of the passive tuned liquid damper. Journal of Vibration and Control, página 10775463221074077, 2022.
Lee B.H., Chen C.C., Chen T.W., Shiao S.Y., Jiang C.R., y Yeh F.Y. Enhancement of structural seismic performance of low-rise buildings using displacement-dependent tuned mass damper.Structures, 37:1119-1128, 2022. https://doi.org/10.1016/j.istruc.2022.01.051
Lu Z., Wang Z., Zhou Y., y Lu X. Nonlinear dissipative devices in structural vibration control:A review. Journal of Sound and Vibration, 423:18-49, 2018. Pacific Earthquake Engineering Research Center. Peer ground motion database. https: //ngawest2.berkeley.edu, 2013. Accessed: 2024-09-13. https://doi.org/10.1016/j.jsv.2018.02.052
Pandey D.K., Sharma M.K., y Mishra S.K. A compliant tuned liquid damper for controlling seismic vibration of short period structures. Mechanical Systems and Signal Processing, 132:405-428, 2019. https://doi.org/10.1016/j.ymssp.2019.07.002
Pandit A. y Biswal K. Seismic control of multi degree of freedom structure outfitted with sloped bottom tuned liquid damper. Structures, 25:229-240, 2020.Park J., Towashiraporn P., Craig J.I., y Goodno B.J. Seismic fragility analysis of low-rise unreinforced masonry structures. Engineering Structures, 31(1):125-137, 2009. https://doi.org/10.1016/j.engstruct.2008.07.021
Tang Z., Dong Y., Liu H., y Li Z. Frequency domain analysis method of tuned liquid damper controlled multi-degree of freedoms system subject to earthquake excitation. Journal of Building Engineering, 48:103910, 2022. https://doi.org/10.1016/j.jobe.2021.103910
Vafaei M., Pabarja A., y Alih S.C. An innovative tuned liquid damper for vibration mitigation of structures. International Journal of Civil Engineering, 19(9):1071-1090, 2021. https://doi.org/10.1007/s40999-021-00626-8
Xie F. y Aly A.M. Structural control and vibration issues in wind turbines: A review. Engineering Structures, 210:110087, 2020. https://doi.org/10.1016/j.engstruct.2019.110087
Yang F., Sedaghati R., y Esmailzadeh E. Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 28(7-8):812- 836, 2022. https://doi.org/10.1177/1077546320984305
Zuo H., Bi K., y Hao H. A state-of-the-art review on the vibration mitigation of wind turbines. Renewable and Sustainable Energy Reviews, 121:109710, 2020. https://doi.org/10.1016/j.rser.2020.109710 vibration issues in wind turbines: A review. Engineering Structures, 210:110087, 2020.
Yang F., Sedaghati R., y Esmailzadeh E. Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. Journal of Vibration and Control, 28(7-8):812– 836, 2022.
Zuo H., Bi K., y Hao H. A state-of-the-art review on the vibration mitigation of wind turbines. Renewable and Sustainable Energy Reviews, 121:109710, 2020.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Asociación Argentina de Mecánica Computacional

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Esta publicación es de acceso abierto diamante, sin ningún tipo de costo para los autores ni los lectores.
Solo se publicarán aquellos trabajos que han sido aceptados para su publicación y han sido presentados en el congreso de AMCA.