Soft Sensor Based on Recurrent Neural Networks: Application to Monitoring of the Production of Nitrile Rubber

Authors

  • Mariano M. Perdomo Instituto de Desarrollo Tecnológico para la Industria Química, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral & Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Energéticos. Santa Fe, Argentina.
  • Luis A. Clementi Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Energéticos. Santa Fe, Argentina. & Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Entre Ríos. Oro Verde, Argentina.
  • Jorge R. Vega Instituto de Desarrollo Tecnológico para la Industria Química, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Litoral & Universidad Tecnológica Nacional, Facultad Regional Santa Fe, Centro de Investigación y Desarrollo en Ingeniería Eléctrica y Sistemas Energéticos. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i20.104

Keywords:

Inferential sensor, batch process, NBR rubber, deep learning

Abstract

In Argentina, nitrile rubber (NBR) is produced in an emulsion polymerization carried out in a batch reactor. Measuring polymer quality variables (e.g., with online analyzers or in laboratory) does not ensure an adequate monitoring of the reaction. In this work, a soft-sensor (SS) is developed to online estimate some quality variables. The complexity lies in the highly non-linear dynamics involved in the process. Therefore, the proposed SS uses recurrent neural networks. The evaluation of the estimation tool is carried out through a numerical simulator of the NBR process adjusted to the industrial plant. The estimates obtained in different reactor operation scenarios are promising. The SS could be implemented in the industrial plant in a simple way.

References

Bishop, C. M., and Bishop, H., Deep learning: Foundations and concepts. Springer Nature, 2023. https://doi.org/10.1007/978-3-031-45468-4

Cho, K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., and Bengio Y., Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078[cs.CL], 2014. https://doi.org/10.3115/v1/D14-1179

Clementi, L. A., Suvire, R. B., Rossomando, F. G., and Vega, J. R., A Closed-Loop Control Strategy for Producing Nitrile Rubber of Uniform Chemical Composition in a Semibatch Reactor: A Simulation Study. Macromolecular Reaction Engineering, 12:1700054, 2018. https://doi.org/10.1002/mren.201700054

Goodfellow I., Bengio Y., and Courville A., Deep Learning. MIT press, 2016.

Perera, Y. S., Ratnaweera, D. A. A. C., Dasanayaka, C. H., and Abeykoon, C., The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review. Engineering Applications of Artificial Intelligence, 121:105988, 2023 https://doi.org/10.1016/j.engappai.2023.105988

Sangoi, E., SBR and NBR industrial processes energetically coupled: dynamic simulation, estimation of variables and new power contributions to the energy system of the industrial complex" Ph.D. dissertation, National Technological Univ., Santa Fe, Argentina, 2021.

Sanseverinatti, C. I., Perdomo, M. M., Clementi, L. A., and Vega, J. R., An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process. Macromolecular Reaction Engineering, 17:2300025, 2023. https://doi.org/10.1002/mren.202300025

Madhuranthakam, C. M. and Penlidis, A. Improved Operating Scenarios for the Production of Acrylonitrile-Butadiene Emulsions. Polym. Eng. & Sci., 53:9-20, 2013. https://doi.org/10.1002/pen.23231

Perdomo, M. M, Clementi, L. A and Vega, J. R., Estimation of quality variables in a continuous train of reactors using recurrent neural networks-based soft sensors. Chemometrics and Intelligent Laboratory Systems, 253:105204, 2024. https://doi.org/10.1016/j.chemolab.2024.105204

Saldívar-Guerra, E., Infante-Martínez, R. and Islas-Manzur, J. M, Mathematical Modeling of the Production of Elastomers by Emulsion Polymerization in Trains of Continuous Reactors. Processes, 8:1508, 2020. https://doi.org/10.3390/pr8111508

Vega, J.R., Gugliotta, L.M., Bielsa, R.O., Brandolini, M.C. and Meira, G.R., Emulsión Copolymerization of Acrylonitrile and Butadiene. Mathematical Model of an Industrial Reactor. Ind. Eng. Chem. Res. 36:1238-1246, 1997. https://doi.org/10.1021/ie9605342

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024