Aircraft Maneuvering Simulation Based on Computational Fluid Dynamics

Authors

  • Carlos Sacco Universidad de la Defensa Nacional, Centro Regional Córdoba, Instituto Universitario Aeronáutico, Facultad de Ingeniería, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina. & Unidad de Investigación y Desarrollo Estratégico para la Defensa (CONICET-MINDEF).Villa Martelli, Buenos Aires, Argentina.
  • Juan P. Giovacchini Universidad de la Defensa Nacional, Centro Regional Córdoba, Instituto Universitario Aeronáutico, Facultad de Ingeniería, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina. & Unidad de Investigación y Desarrollo Estratégico para la Defensa (CONICET-MINDEF).Villa Martelli, Buenos Aires, Argentina.
  • Fabricio Drudi Universidad de la Defensa Nacional, Centro Regional Córdoba, Instituto Universitario Aeronáutico, Facultad de Ingeniería, Departamento de Ingeniería Aeroespacial. Córdoba, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i20.107

Keywords:

Non inertial formulation, aerodynamics, aircraft manoeuver

Abstract

In the field of aeronautical engineering, linearised models are generally used to predict the behaviour of an aircraft. These models, based on static and dynamic derivatives, make it possible to predict most aircraft manoeuvres. Currently, numerical simulations have enabled the prediction of aircraft behavior during complex maneuvers without the need for costly flight tests. This work proposes a methodology to perform numerical simulations of aircraft dynamics for an specified maneuver. A finite element code is used to solve the Navier-Stokes equations in a non-inertial formulation, coupled with a model that simulates maneuvers. The implemented formulation offers the advantage of using a fixed mesh, where the boundary conditions are modified to take into account the rigid body movement. As validation, results are presented for two problems with known solutions: an isolated wing (ONERA-M6) and a wind tunnel model known as the unswept-wing.

References

Bryan G.H. Stability in Aviation. An Introduction to Dynamical Stability as Applied to the Motions of Aeroplanes. MacMillan and Co., St. Martin's street, London, 1 edición, 1911. ISBN 978-0-266-33252-7.

Codina R. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Computer Methods in Applied Mechanics and Engineering, 190(13):1579-1599, 2000. ISSN 0045-7825. https://doi.org/10.1016/S0045-7825(00)00254-1

Da Ronch A., Vallespin D., Ghoreyshi M., y Badcock K.J. Evaluation of dynamic derivatives using computational fluid dynamics. AIAA Journal, 50(2):470-484, 2012. https://doi.org/10.2514/1.J051304

Donea J., Huerta A., Ponthot J.P., y Rodríguez-Ferran A. Arbitrary Lagrangian-Eulerian Methods, capítulo 14. John Wiley & Sons, Ltd, 2004. ISBN 9780470091357.

Fletcher H.S. Comparison of several methods for estimating low-speed stability derivatives for two airplane configurations. Informe Técnico D-6531, National Aeronautics and Space Administration, 1971. NASA Technical Note D-6531.

Hübner A., Bergmann A., Loeser T., y Bergmann A. Experimental and Numerical Investigations of Unsteady Force and Pressure Distributions of Moving Transport Aircraft Configurations. 2009. https://doi.org/10.2514/6.2009-91

Klein V. y Noderer K. Modeling of aircraft unsteady aerodynamic characteristics. part 1: Postulated models. Informe Técnico NASA TM 109120, National Aeronautics and Space Administration - Langley Research Center, Hampton, Virginia 23681-0001, 1994.

Letko W. y Riley D.R. Effect of an unswept wing on the contribution of unswept-tail configurations to the low-speed static and rolling-stability derivatives. Informe Técnico 2175, NATIONAL ADVISORY COMMITTEE FOR AERONAUTCS, Langley Aeronautical, 1950.

Mader C.A. y Martins J.R.R.A. Computation of aircraft stability derivatives using an automatic differentiation adjoint approach. AIAA Journal, 49(12):2737-2750, 2011. https://doi.org/10.2514/1.J051147

Sacco C. y Giovacchini J.P. Estimación de derivativas estáticas y dinámicas mediante cfd. VI Congreso Argentino de Ingeniería Aeronáutica. Universidad Tecnológica Nacional, Facultad Regional Haedo, 2021.

Sacco C., Gonzalez E., y Giuggioloni F. Análisis de la aerodinámica de un vehículo de competición. En A. Cardona, editor, Mecánica Computacional, páginas 83-94. 2006.

Schmitt V. y Charpin F. Pressure distributions on the onera-m6-wing at transonic mach numbers. Informe Técnico AGARD Advisory Report No.138, Advisory Group for Aerospace Research and Development - NATO, 1979. Experimental data base for computer program assesment - Report of the fluid dynamics panel - Working group 04.

Smith M.S. Analysis of wind tunnel oscillatory data of the x-31a aircraft. Informe Técnico CR-1999-208725, National Aeronautics and Space Administration - Langley Research Center, Hampton, Virginia, 1999.

Soto O., Loehner R., y Cebral J. An implicit monolithic time accurate finite element scheme for incompressible flow problems. 2001. doi:10.2514/6.2001-2616. https://doi.org/10.2514/6.2001-2616

Wilcox D. Turbulence Modeling for CFD. Turbulence Modeling for CFD. DCW Industries, 2006. ISBN 9781928729082.

Yanenko N.N. The Method of Fractional Steps. Springer Berlin Heidelberg, 1971. https://doi.org/10.1007/978-3-642-65108-3

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024