Steel Fiber Reinforced Concrete Pipes: Parametric Study of the Bearing Capacity Through a Biphase Model
DOI:
https://doi.org/10.70567/mc.v41i2.11Keywords:
SFRC, Drainage pipes, Stochastic analysis, Fiber distribution and orientationAbstract
Steel fiber reinforced concrete (SFRC) has some unpredictability in terms of the distribution of reinforcement within the concrete mass. Different fiber orientations and distributions, along with other factors, influence the mechanical performance of the composite material. In this work, a parametric study of the strength capacity of SFRC pipes is carried out using a bi phase material model (concrete + fibers) that considers the geometry of the fibers and their position within the concrete. The variables analyzed in the parametric study are fiber dosage and concrete class. Ideal cases of fiber orientations were also studied. In order to carry out this study, the three edge bearing test according to IRAM 11503 standard is simulated, which is implemented with a finite element software (ABAQUS©). Finally, the maximum load values obtained from the simulations are shown and an analytical method to estimate this load is proposed.
References
Barros J. y Figueiras J. Flexural behavior of sfrc: Testing and modeling. Journal of Materials in Civil Engineering, 4(11):331-339, 1999. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331).
Bentur A. y Mindess S. Fibre Reinforced Cementitious Composites. Taylor & Francis, 2007. ISBN 978-0-415-25048-1.
Boulekbache B., Hamrat M., Chemrouk M., y Amziane S. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construction and Building Materials, 24(9):1664-1671, 2010. https://doi.org/10.1016/j.conbuildmat.2010.02.025
Buratti N., Mazzotti C., y Savoia M. Post-cracking behaviour of steel and macrosynthetic fibre-reinforced concretes. Construction and Building Materials, 34:243-248, 2011. https://doi.org/10.1016/j.conbuildmat.2010.12.022
De la Fuente A., Escariz R., de Figueiredo A., Molins C., y Aguado A. A new design method for steel fibre reinforced concrete pipes. Construction and Building Materials, 30:547-555,2012. https://doi.org/10.1016/j.conbuildmat.2011.12.015
Dupont D. y Vandewalle L. Distribution of steel fibres in rectangle sections. Cement and Concrete Composites, 27:391-398, 2005. https://doi.org/10.1016/j.cemconcomp.2004.03.005
Ezeldin A. Optimum design of reinforced fiber concrete subjected to bending and geometrical constraints. Computers and Structures, 41(5):1095-1100, 1990. https://doi.org/10.1016/0045-7949(91)90304-5
Ferrado F. Estudio numérico-experimental del comportamiento mecánico-estructural de tubos de hormigón reforzado con fibras de acero. Tesis de Doctorado, Universidad Tecnológica Nacional, 2024.
Ferrado F., Escalante M., y Rougier V. Modelo bi fase del hrfa para el estudio de la influencia de la orientación y distribución de fibras de acero en la resistencia mecánica de tubos de drenaje. Mecánica Computacional, 37(7):189-198, 2019.
Kiranbala D. y Bishwotrij S. Effects of steel fibres in reinforced concrete. International Journal of Engineering Research & Technology, 2(10):2906-2913, 2013.
Laranjeira F., Grunewald S., Walraven J., Blom C., Molins C., y Aguado A. Characterization of the orientation profile of steel fiber reinforced concrete. Materials and Structures, 44(6):1093-1111, 2011. https://doi.org/10.1617/s11527-010-9686-5
Michels J., Christen R., yWaldmann D. Experimental and numerical investigation on post cracking behaviour of steel fiber reinforced concrete. Engineering Fracture Mechanics, 98:326-349, 2013. https://doi.org/10.1016/j.engfracmech.2012.11.004
Mohamed N. y Nehdi M. Rational finite element assisted design of precast steel fibre reinforced concrete pipes. Engineering Structures, 124:196-206, 2016. https://doi.org/10.1016/j.engstruct.2016.06.014.
Ozyurt N., Mason T., y Shah S. Correlation of fiber dispersion, rheology and mechanical performance of frcs. Cement and Concrete Composites, 29(2):70-79, 2007. https://doi.org/10.1016/j.cemconcomp.2006.08.006
Peyvandi A., Soroushian P., y Jahangirnejad S. Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement. Construction and Building Materials, 45:36-44, 2013. https://doi.org/10.1016/j.conbuildmat.2013.03.084
Song P. y Hwang S. Mechanical properties of high-strength steel fiber reinforced concrete. Construction and Building Materials, 18(9):669-673, 2004. https://doi.org/10.1016/j.conbuildmat.2004.04.027
Soulioti D., Barkoula M., Paipetis A., y Matikas T. Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain, 47:e535-e541, 2009. https://doi.org/10.1111/j.1475-1305.2009.00652.x
Svec O. y Zirgulis G. Influence of formwork surface on the orientation of steel fibers within selfcompacting concrete and on the mechanical properties of casting structural element. Cement and Concrete Composites, 50:60-72, 2014. https://doi.org/10.1016/j.cemconcomp.2013.12.002
Zandi Y., Husem M., y Pul S. Effect of distribution and orientation of steel fiber reinforced concrete. En Proceedings of the 4th WSEAS international conference on Energy and development - environment - biomedicine, páginas 260-264. 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Argentine Association for Computational Mechanics

This work is licensed under a Creative Commons Attribution 4.0 International License.
This publication is open access diamond, with no cost to authors or readers.
Only those papers that have been accepted for publication and have been presented at the AMCA congress will be published.