Evaluation of a Flat Plate Solar Collector Using Computational Fluid Dynamics

Authors

  • María Clara Cortizo Carbone Centro de Investigación de Métodos Computacionales (UNL, CONICET). Santa Fe, Argentina & Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina.
  • Juan Cruz Catalano Centro de Investigación de Métodos Computacionales (UNL, CONICET). Santa Fe, Argentina & Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina.
  • César M. Venier Instituto de Física de Rosario (UNR, CONICET) & Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina.
  • César I. Pairetti Instituto de Física de Rosario (UNR, CONICET) & Universidad Nacional de Rosario, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Escuela de Ingeniería Mecánica. Rosario, Argentina.
  • Johan Sarache Piña Centro de Investigación de Métodos Computacionales (UNL, CONICET) & Universidad Nacional del Litoral, Facultad de Ingeniería y Ciencias Hídricas, Santa Fe, Argentina.
  • Darío M. Godino Centro de Investigación de Métodos Computacionales (UNL, CONICET) & Universidad Tecnológica Nacional, Facultad Regional Santa Fe. Santa Fe, Argentina.

DOI:

https://doi.org/10.70567/mc.v41i21.110

Keywords:

Heat Transfer, solar collector, radiation

Abstract

This paper presents a study of heat transfer by conduction, convection and radiation in a flat plate solar collector using computational fluid dynamics with OpenFOAM(R). Based on the dimensions and operating conditions of an existing solar collector at the National University of Rosario, a two-dimensional geometry is first analysed to calibrate the numerical model. Subsequently, a threedimensional geometry representing the central tube of the collector is evaluated. The thermal performance and the evolution of the main variables are studied over the course of a summer day, taking into account different levels of solar radiation. The results obtained allow the thermal behaviour of the collector to be accurately predicted and provide a detailed understanding of its physical dynamics.

References

Badiei Z., Eslami M., y Jafarpur K. Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A cfd modeling. Energy, 192:116719, 2020. https://doi.org/10.1016/j.energy.2019.116719

Catalano J.C., Carbone M.C.C., Piña A.J.S., Godino D., Pairetti C.I., y Venier C.M. Simulación computacional de fenómenos de convección natural y radiación en cavidades cerradas. Mecánica Computacional, 40(38):1399-1408, 2023.

Fan J., Shah L.J., y Furbo S. Flow distribution in a solar collector panel with horizontally inclined absorber strips. Solar energy, 81(12):1501-1511, 2007. https://doi.org/10.1016/j.solener.2007.02.001

Gertzos K. y Caouris Y. Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (icsswh). Experimental Thermal and Fluid Science, 32(5):1105-1117, 2008. https://doi.org/10.1016/j.expthermflusci.2008.01.003

Gertzos K., Caouris Y., y Panidis T. Optimal design and placement of serpentine heat exchangers for indirect heat withdrawal, inside flat plate integrated collector storage solar water heaters (icsswh). Renewable energy, 35(8):1741-1750, 2010. https://doi.org/10.1016/j.renene.2009.12.014

Gertzos K., Pnevmatikakis S., y Caouris Y. Experimental and numerical study of heat transfer phenomena, inside a flat-plate integrated collector storage solar water heater (icsswh), with indirect heat withdrawal. Energy Conversion and Management, 49(11):3104-3115, 2008. https://doi.org/10.1016/j.enconman.2008.06.005

Gunjo D.G., Mahanta P., y Robi P. Cfd and experimental investigation of flat plate solar water heating system under steady state condition. Renewable energy, 106:24-36, 2017. https://doi.org/10.1016/j.renene.2016.12.041

Hamed M., Fallah A., y Brahim A.B. Numerical analysis of an integrated storage solar heater. International Journal of Hydrogen Energy, 42(13):8721-8732, 2017. https://doi.org/10.1016/j.ijhydene.2016.07.116

Hottel H.C. y Whillier A. Transactions of the Conference on the Use of Solar Energy, capítulo "Evaluation of Flat-Plate Collector Performance.", página 74. (E. F. Carpenter, ed.), Vol. 2, P. I, University of Arizona Press, Tucson, 1958.

Howell John R., Siegel R., y Mengüc Pinar M. Thermal Radiation Heat Transfer. Taylor & Francis, 2010. https://doi.org/10.1201/9781439894552

Modest Michael F. Radiative Heat Transfer. Academic Press, London, 2003. https://doi.org/10.1016/B978-012503163-9/50023-0

Selmi M., Al-Khawaja M.J., y Marafia A. Validation of cfd simulation for flat plate solar energy collector. Renewable energy, 33(3):383-387, 2008. https://doi.org/10.1016/j.renene.2007.02.003

Tagliafico L.A., Scarpa F., y De Rosa M. Dynamic thermal models and cfd analysis for flat-plate thermal solar collectors-a review. Renewable and Sustainable Energy Reviews, 30:526-537, 2014. https://doi.org/10.1016/j.rser.2013.10.023

Turgut O. y Onur N. Three dimensional numerical and experimental study of forced convection heat transfer on solar collector surface. International Communications in Heat and Mass Transfer, 36(3):274-279, 2009. https://doi.org/10.1016/j.icheatmasstransfer.2008.10.017

Whillier A. Solar energy collection and its utilization for house heating. Tesis de Doctorado, Massachusetts Institute of Technology, 1953.

Published

2024-11-08

Issue

Section

Conference Papers in MECOM 2024

Most read articles by the same author(s)